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Abstract

The mean is often the most important statistic of a
dataset as it provides a single point that summarizes the en-
tire set. While the mean is readily defined and computed in
Euclidean spaces, no commonly accepted solutions are cur-
rently available in more complicated spaces, such as spaces
of tree-structured data. In this paper we study the notion of
means, both generally in Gromov’s CAT (0)-spaces (met-
ric spaces of non-positive curvature), but also specifically
in the space of tree-like shapes. We prove local existence
and uniqueness of means in such spaces and discuss three
different algorithms for computing means.

We make an experimental evaluation of the three algo-
rithms through experiments on three different sets of data
with tree-like structure: a synthetic dataset, a leaf morphol-
ogy dataset from images, and a set of human airway sub-
trees from medical CT scans. This experimental study pro-
vides great insight into the behavior of the different meth-
ods and how they relate to each other. More importantly,
it also provides mathematically well-founded, tractable and
robust “average trees”. This statistic is of utmost impor-
tance due to the ever-presence of tree-like structures in hu-
man anatomy, e.g., airways and vascularization systems.

1. Notions of means

Centroids, weighted averages, midpoints of a pair of
points, and other variations on the sample mean are the ba-
sic building blocks of statistical computations. While they
are simple to compute when the underlying sample space is
Euclidean, they may become much more complex in non-
linear sample spaces. A classical definition of centroids in
Euclidean space, dating back to Appolonios of Perga, has a
direct extension to general metric spaces [10,11]: a mean of
the finite collection (xi)i of points in a metric space (X, d)
is a minimizer of the function

Φ(x) =

n∑
i=1

d(x, xi)
2. (1)

2-point dataset A TED means of A

an infinite 
family...

+

Figure 1. The infinite family of trees on the right are TED means
for the set of two trees on the left.

A local minimizer of Φ is called a Karcher mean while a
global is called a Fréchet mean. But when does such a min-
imizer exist? When is it unique? Although the above defi-
nition does not require existence of geodesics, this is often
needed in order to compute a minimizer. This reveals im-
portant problems already in the simplest of situations. If
geodesics exist in X , a solution to the above problem for
a set of two points a and b is the point c on the geodesic
segment from a to b such that d(a, c) = d(b, c). But what
if there is more than one geodesic segment between a and
b? The midpoint of each geodesic segment will minimize
eq. 1.

A key example where this problem occurs is the (Tree)
Edit Distance (denoted TED in the sequel) used in spaces
of attributed graphs and trees, e.g., shock graphs [5,12,16].
This metric is problematic as even locally, geodesics (edit
paths) are not unique, and this prevents the existence of
well-defined means even in a local context. For the pair
of trees on the left in fig. 1 there is an infinite family of
geodesics (and hence means) generated by varying the or-
der and amount by which the side branches are shrunk and
grown while deforming one tree into the other. A common
approach for choosing a typical representative using TED
is to choose the simplest possible mean, in this case the one
shown in the middle. When iteratively computing means,
however, one risks ending up with mean trees that are sig-
nificantly simpler than the trees in the dataset. This explains
the reduced complexity of the TED means found by Trinh
and Kimia [16]. Similarly, in the graph embedding work
of Bunke and collaborators [5, 15], severe restrictions on
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the solution space and geodesics (edit paths) have to be im-
posed in order to have well defined constructions as simple
as midpoints; restrictions that are kept implicit.

Even when geodesics are locally unique, means need not
be unique. Consider data uniformly distributed along the
equator of a sphere: both poles will minimize eq. 1. In
shape analysis, this problem often occurs as most shape
spaces are non-linear. In Riemannian manifolds, such as
the sphere example, existence of at least locally minimiz-
ing geodesics is guaranteed. Tools from differential calcu-
lus are available for the optimization of eq. 1 and Karcher
[11] provides conditions for local existence and unique-
ness of the mean. Hence, in most statistical contexts one
is content to find a (reasonably large) dataset radius within
which geodesics and local minimizers of eq. 1 exist and are
unique; for the unit sphere this radius is π/2.

The Appolonios problem (eq. 1) in Euclidean space
can also be solved by geometric constructions using only
geodesics and weighted midpoints, which carry over to
more general metric spaces. But do different methods pro-
vide the same solutions? Even locally? Already in the Rie-
mannian framework, non-linearity introduces difficulties in
other constructions. A simple example is Principal Compo-
nent Analysis, which in the Euclidean case can equally well
be defined via maximization of projected variances on sub-
spaces or minimization of reconstruction errors. But these
approaches lead to different solutions in the Riemannian
setting, e.g., Fletcher’s PGA [6] and Huckemann’s GPCA
[9] are not equivalent. With this in mind, one should tread
carefully when generalizing from Euclidean methods.

Tree-like shapes (and more generally graph-like shapes),
among others, present a great challenge, as they are not nat-
urally modeled as elements of smooth manifolds. Any tree-
shape can be obtained as a limit of a large number of tree-
shapes with very different tree topologies, creating natural
self-intersections in tree-space. This may prevent the use
of smooth optimization methods. However, this complexity
does not prevent the use of treelike shapes. In computer vi-
sion they appear in skeletons and shock-graphs for 2D shape
recognition and classification [3, 12, 16], and they are often
encountered in medical imaging, as airways and blood vas-
culatures have natural tree-like shapes [14, 17].

Feragen et al. [4] introduced a construction of tree-like
shape spaces with a metric called Quotient Euclidean Dis-
tance (QED), which gives existence and local uniqueness of
geodesics. This follows from the fact that they are locally
CAT(0)-spaces or spaces of non-positive curvature, a con-
cept introduced by Gromov [8] and discussed in the mono-
graph [2]. Billera, Holmes and Vogtmann [1] have proposed
a CAT (0)-space structure for phylogenetic trees, but these
trees are abstract objects not encoding 2D or 3D shape, with
much more restricted variations.

Spaces of tree-like shapes, in spite of their complexity,

offer a very good framework for computing means through
geometric solutions to the Appolonios problem. In this
paper we explore three such constructions: the centroid,
Birkhoff shortening and weighted midpoints. The methods
are tested on leaf vasculature shapes and airway tree shapes.

The rest of the article is organized as follows. In sec. 2
we discuss the space of tree-like shapes along with a metric
that gives locally unique geodesics. We review the basics
of metric geometry in spaces of non-positive curvature in
sec. 3. This leads us to the theoretical novelty of the paper as
we prove that unique means exist in such spaces in sec. 3.1.
We then discuss various ways of defining and computing
means (sec. 4) followed by an experimental comparison of
these means (sec. 5). Finally, the paper is concluded with a
brief summary and a discussion of open problems.

2. The space of tree-like shapes
We are interested in spaces of tree-like shapes as defined

by Feragen et al. [4]. Tree-like shapes are represented as
rooted, ordered, binary trees T = (V,E, r,<) with edge at-
tributes f : E → Rn. The attributes take values in Rn, and
describe the shape of the particular edge, e.g., via landmark
points. The branch order can, for instance, come from a pla-
nar ordering of branches. To compare the tree-shapes within
one single shape-space, all tree-shapes are parametrized us-
ing the same combinatorial tree T , which is sufficiently
large to describe all the tree-shapes in our dataset. Trees
with fewer edges are represented by collapsing redundant
branches, as in fig. 2. Higher-order bifurcations are repre-
sented in a similar fashion, also using collapsed branches.
This gives a representation space X =

∏
e∈E Rn, where all

tree-like shapes are represented at least once. A space of
ordered tree-like shapes X̄ is defined as a quotient space of
X by identifying different order-preserving representations
of the same tree-shape. This corresponds to folding the Eu-
clidean representation space and gluing it along different
representations of the same trees. From the Euclidean met-
ric on X , Feragen et al. induce the quotient metric on X̄ ,
which in this case is called the QED metric. The quotient
metric is a standard mathematical construction [2], which
here creates a piecewise Euclidean metric. If the Euclidean
metric on X is replaced with an l1 product metric, the TED
metric is retrieved as quotient metric on X̄ .

Planar trees come with a given branch order (left to right)
on the set of children of each branch, and hence a branch
order on the entire tree is easily obtained. Trees that reside
in 3D space are not ordered in the same way. In order to
optimally compute the distance between two trees, it is nec-
essary to consider all possible orders on the two trees. At a
first glance, this seems to give problems with computational
complexity. However, when studying shapes that are close
together this is not necessary. We can induce an order on
each tree by fixing an order on one (sufficiently large) tree,

2
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Figure 2. Higher-order vertices can be represented by the binary
tree by collapsing internal branches, as the dotted blue lines.

aligning the other trees with the chosen one. The alignment
can be done by finding the order that minimizes the distance
between the trees. This way, we effectively reduce our set
of unordered trees to a set of ordered trees. This becomes
a great computational relief when we start computing av-
erage 3D trees, since we make a large number of distance
computations as part of the iterative midpoint procedures.

3. Curvature and means in metric spaces
A very favorable property of the space of tree-like shapes

is that its local geometry facilitates statistical computations.
To be more precise, at “generic points” (that is, at any ran-
domly chosen point) the space is locally CAT (0). This
concept is at the heart of our analysis, and is novel in the
context of computer vision. Thus, we shall dedicate a few
lines to explaining what CAT (0) spaces are and why they
are nice geometric objects.

One way of studying the geometry of general met-
ric spaces is to compare them to spaces whose geome-
try we understand well, referred to as model spaces. The
model spaces are spheres (positively curved), the Euclidean
plane (flat, no curvature) and hyperbolic spaces (negatively
curved). Since metric spaces can be rather pathological, a
typical approach to defining curvature is to bound the cur-
vature of the space at a given point from above or below. In
this article we study spaces of non-positive curvature, i.e.,
their curvature is bounded from above by 0. Due to the cur-
vature bounded by 0, we study the metric spaces by com-
paring triangles in the metric space with triangles in the Eu-
clidean plane, as in Gromov’s metric geometry [2,8]. Math-
ematically, this is expressed by the CAT (0) condition:

Definition 1 (CAT (0) spaces, non-positive curvature)
Let X be a geodesic metric space, that is, a space in which
all points can be joined by a geodesic. The length of a path
is defined by the metric d in X . A geodesic triangle abc
in X consists of three points a, b and c in X , along with
geodesic paths joining the points: [ab], [bc] and [ac], see
fig. 3. There exists a triangle āb̄c̄ in the Euclidean plane
with vertices ā, b̄ and c̄ and with edges [āb̄], [b̄c̄] and [āc̄],
whose lengths are the same as the lengths of [ab], [bc] and
[ac]. This is a comparison triangle for abc, see fig. 3.

For any point x sitting on the segment [bc], there is a
corresponding point x̄ on the segment [b̄c̄] in the compari-

Figure 3. Left: A geodesic triangle, right: the corresponding com-
parison triangle in the plane R2.

quotient

Figure 4. The simplest nontrivial example of a tree-shape space X̄
(right) with representation space X (left): Trees with two edges e1
and e2, with scalar edge attributes. Here we see the path from T̄1,
with two edges, through T̄ , with one edge, to T̄2, also with two
edges. The one-branch tree T̄ has two representatives in X on the
e1 and e2 axes, respectively, which are glued together in the shape
space (right). Note how the path from T̄1 to T̄2 in X̄ is made from
concatenated Euclidean lines in X , with a “teleportation” (dotted
line) gluing the representatives T and T ′ of T̄ together.

son triangle, such that ‖x̄− b̄‖ = d(x, b). If we have

d(x, a) ≤ ‖x− a‖ (2)

for every such x, then the geodesic triangle abc satisfies the
CAT (0) condition.

The metric space X is a CAT (0) space if any geodesic
triangle abc in X satisfies the CAT (0) condition given in
eq. 2. Geometrically, this means that triangles in X are
thinner than triangles in R2. Spaces which are locally
CAT (0) are non-positively curved.

A few examples of CAT (0) spaces are:

1) Euclidean space is a CAT (0) space.
2) Any non-positively curved manifold is locally

CAT (0).
3) The union of two intersecting planes is a CAT (0)

space [2, Chapter II Theorem 11.3].
4) The space of tree-like shapes, see fig. 4, is locally

CAT (0) at generic points [4, Theorem 2].

3.1. Means in CAT (0) spaces

As shown in [4] and discussed above, for generic points
in the space of tree-like shapes there exists a radius rx > 0
such that the ballB(x, rx) is aCAT (0)-space. For a point x
in the shape space in fig. 4, whose distance to the projected

3
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origin is d, rx = d tan(π/8); namely the radius within
which all points are joined by a unique geodesic. Hence,
if means exist and are unique in CAT (0) spaces, they exist
and are unique for sufficiently dense sets of tree-like shapes.

Theorem 2 Means exist and are unique in CAT (0)-
spaces.

Proof: Let (X, d) be a CAT (0)-space. It follows from
the CAT (0)-inequality that given any fixed y ∈ X , the
function dy : X → R given by dy(x) = d(x, y) is convex.
Then the function d2y is also convex since the function
g : a 7→ a2 is monotone, increasing and convex. Moreover,
((1− s)dy(x) + sdy(x′))

2
< (1 − s)d2y(x) + sd2y(x′) for

any s ∈]0, 1[, and hence, d2y is actually strictly convex.
Then Φ =

∑s
i=1 d

2
xi

is strictly convex, and the mean is a
minimizer of the strictly convex function Φ; hence it exists
and is unique. 2

As a direct consequence, means do exist and are even
unique for datasets of sufficiently small diameter in tree-
space with the QED metric. This is in stark contrast to the
TED metric where means are practically never unique.

4. Computing means
For finite point sets in the Euclidean space, the easi-

est way to compute the mean is the closed form solution∑
xi/N . This solution does not carry over to non-linear

spaces, but other techniques do.
One way to optimize eq. 1 is to use gradient descent.

However, in the case of tree-structured data, the shape space
is not even a smooth manifold. Hence, we cannot perform
a regular gradient descent, but would have to develop opti-
mization methods for non-smooth spaces. Moreover, we
do not have an analytic expression for the gradient even
in the smooth parts of the space. In order to numerically
approximate derivatives, the distance function would need
to be evaluated a large number of times. This makes opti-
mization schemes unattractive for computing means in tree-
space, where distances are expensive to compute.

Since the two most obvious methods for computing a
mean shape are not applicable in tree-space, we need to
look for alternative ways of computing means, which do
not require evaluating too many distances. In this paper we
study three iterative algorithms, which are all based on halv-
ing geodesics, namely centroids, Birkhoff shortening and
weighted midpoints.

4.1. The centroid

The centroid c(A) of a dataset A = {x1, . . . , xN} in
a geodesic metric space (X, d), is defined as follows by
Billera, Holmes and Vogtmann [1]:

If N = 2, then c(A) is the midpoint of the geodesic
connecting the two points x1 and x2. Assume that we have

Figure 5. This illustration is best viewed in color. The centroid pro-
cess is defined recursively with respect to the number of elements
in the dataset. On the 4 point dataset A = {x1, x2, x3, x4}, each
iteration consists finding the centroids of four 3-point subsets of
A. Left: The iterative process illustrated for a 4 point dataset, and
the centroids are denoted x1

1, x
1
2, x

1
3, x

1
4. Right: For datasets with

3 points, the centroid process coincides with Birkhoff shortening.

a working definition of centroid for datasets with at most
N − 1 points. Then define a set of subsets A1, . . . , AN by
settingAi = A\{xi}. Define a newN -element set c1(A) =
{c(A1), . . . , c(AN )}, that is replacing A by centroids for
each (N − 1)-element subset of A. This is illustrated in
fig. 5. Define a sequence of sets ck(A) for k ∈ N by setting
ck(A) = c1(ck−1(A)); if the sequence ck(A) converges to
a single point c ∈ X , then c is the centroid of A.

It is easy to see that in Euclidean space, the centroid is
just the regular mean

∑
i xi/N . Billera, Holmes and Vogt-

mann [1, Theorem 4.1] prove that in CAT (0)-spaces, the
centroid construction converges to a unique point. It is,
however, unknown whether this point is generally the mean,
as defined in eq. 1, or a different point.

4.1.1 Algorithmic properties

The centroid is nice in theory since it defines a well-posed
problem: centroids exist and are unique in CAT (0) spaces.
However, its algorithmic properties are not attractive. The
computational complexity of computing c(A) for a dataset
A with N elements, is of the order N times the computa-
tional complexity of computing c(A′) for a dataset A′ with
N−1 elements, i.e.,O(N !). In addition, each step involves
an iterative convergence procedure, whose complexity is
unknown. Combined with an expensive metric, the centroid
is essentially intractable for datasets, which are sufficiently
large to be interesting. This motivates us to investigate sim-
pler algorithms that compute means in the Euclidean case.

4.2. Birkhoff shortening

Another method for computing means is given by
Birkhoff curve shortening, which is used in metric and
differential geometry to generate closed geodesic curves.
Given a closed curve γ : S1 → X from the unit circle into
a (locally) geodesic metric space X , sample the curve by
picking N points z1, . . . , zN on S1 and consider their im-
ages xi = γ(zi), setting A = {xi|i = 1, . . . , N}. Start an
iterative process by replacing each point xi by the midpoint

4
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Figure 6. Left: Birkhoff curve shortening: Replace a sampled
curve by new samples generated at the midpoint of each segment.
The process converges to a closed geodesic. Right: By collect-
ing midpoints from every second iteration (in colors), we get two
Cauchy sequences, which must converge since the space is com-
plete. It follows that the procedure converges to a closed curve.

x1i of the geodesic connecting xi to xi+1, where we de-
fine xN+1 = x1. Together with the geodesic segments we
now have a new closed curve; see fig. 6 for an illustration.
This process can be continued until convergence, which is
ensured by Theorem 3 below. Note that when A contains
three elements, the centroid procedure coincides with the
Birkhoff shortening, see also fig. 5.

In Euclidean space it is easy to see that this process con-
verges to the mean of the point set A. Trinh and Kimia [16,
Conjecture 1] conjecture that the same holds for a wide
range of spaces; we are less optimistic and conjecture that
the claim holds locally at generic points for tree-space with
the QED metric.

Theorem 3 Let (X, d) be a complete, geodesic metric
space and suppose given an ordered set of points A =
{x1, . . . , xN} in (X, d). The Birkhoff shortening process
converges to a closed geodesic, and if the space (X, d) does
not have closed geodesics, then the Birkhoff shortening pro-
cess converges to a single point.

A simpler form of this theorem is stated without proof by
Trinh and Kimia [16, Proposition 1]; we give the proof in
the case of a geodesic metric space, as the proof also sheds
some light on the difficulties and potential dangers.
Proof of Theorem 3: We first note that each step in the
Birkhoff shortening process will make the loop in ques-
tion shorter, assuming that the current curve is not a closed
geodesic. To see this, note that∑

d(xi, xi+1) =
∑(

d(xi, x
1
i ) + d(x1i , xi+1)

)
=
∑(

d(x1i , xi+1) + d(xi+1, x
1
i+1)

)
≥
∑
d(x1i , x

1
i+1),

(3)
where the first equality comes from the fact that the points
x1i are midpoints of geodesic segments, the second equality
is a rearrangement of terms, and the last inequality comes
from the triangle inequality; see fig. 6. This shows that
Birkhoff shortening will not make the curve longer. If the
original loop is not a geodesic curve, then at one of the
points xi, the loop is not a local geodesic. The curve con-
necting the midpoints before and after xi is not a geodesic,

and hence, replacing with a geodesic will create a strictly
shorter loop.

Next, we need to show that the process converges. The
lengths of the consecutive curves form a decreasing se-
quence of non-negative real numbers, which must converge
towards some length l. Moreover, the odd/even midpoint
sequences shown in fig. 6 are Cauchy (follows from the
CAT (0) criterion) and must converge, so the sequence of
loops converges to a new loop.

Finally, since we have already shown that for non-
geodesic loops, Birkhoff shortening will make the curve
shorter, the limit loop must be a closed geodesic. But
then, if the space does not have closed geodesics, Birkhoff
shortening will converge towards one point. 2

Corollary 4 Since they have unique geodesics [2, Proposi-
tion II.1.4], CAT (0) spaces cannot have closed geodesics.
Hence, the Birkhoff shortening procedure converges to a
point in CAT (0) spaces. In particular, it converges for
sets of tree-like shapes with sufficiently small diameter.

We have shown that for any given initial order on a suf-
ficiently bounded set of tree-like shapes, the Birkhoff short-
ening procedure converges to a point, but we do not know
whether any two orders give the same point. For general
CAT (0) spaces, we doubt that this is true. Consider the
Birkhoff shortening process shown in fig. 6 in a space whose
curvature varies strongly (although staying non-positive).
The shortening process would be highly asymmetric and
it is unlikely that different set orders would give the same
mean. This also gives potential problems with one of the
algorithms used for TED-means by Trinh and Kimia, where
the set order is permuted in every iteration in order to speed
up convergence. However, in tree-space, the local structure
is nice almost everywhere, being either flat or an intersec-
tion of flat regions. Hence, we believe that the Birkhoff
shortening mean may well be independent of its initial or-
der for sets of tree-like shapes in the QED metric.

The computational complexity of each step in the
Birkhoff shortening algorithm is O(N) times the complex-
ity of finding geodesic midpoints. This makes the Birkhoff
shortening procedure suitable for computing means when
distances are expensive to compute. The iterative nature of
the procedure does, however, make it vulnerable to accumu-
lation of numerical noise and approximation errors.

4.3. Weighted midpoints

One of the simplest algorithms for computing the mean
of a set in Rn is based on the following simple observation:

If we denote by m(A) the mean of the finite subset A =
{x1, . . . , xN}, then

m(A) =
xi + (N − 1)m(A \ {xi})

N
. (5)

5
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Figure 7. The weighted midpoints construction.

To see that eq. 5 holds forA ⊂ Rn, just rewrite the equation
analytically in the case i = 1:

x1 + . . .+ xN
N

=
x1 + (N − 1) · x2+...+xN

N−1
N

. (6)

This indicates a recursive procedure for finding the mean
of A in more general spaces: The mean w1 of {x1, x2}
is the midpoint of the geodesic connecting x1 to x2. The
mean w2 of {x1, x2, x3} is the point on the geodesic from
w1 = m(x1, x2) to x3 that sits 1/3 along the way, etc. This
is a finite procedure, whose result we call the weighted mid-
points mean. See also fig. 7.

As the Birkhoff shortening mean, the weighted mid-
points procedure also depends on an initial set order, and
it is not clear whether different orders give the same results.
Again, we believe that the nice local structure of tree-space
may be enough to secure independence of initial order.

5. Experiments
We now experimentally compare the different ap-

proaches on datasets of tree-structured shapes in the space
of tree-like shapes [4] endowed with the QED metric.
Specifically, we test the algorithms on three different
datasets of varying difficulty and size.

The QED geodesics and midpoints were computed using
Algorithm 1 from the article by Feragen et al. [4] on depth
3 trees, leaving space for 1 or 2 structural changes. This
is an approximative algorithm, where the geodesics might
pass through trees of depth higher than 3 in order to make
the structural changes. Whenever the midpoints are of depth
> 3, they are cut off at depth 3 in order to initiate the next it-
eration. This introduces some numerical errors, which may
accumulate in long iterative procedures.

5.1. Synthetic data

The first test set consists of synthetic planar trees which
are designed to test the system’s ability to cope with pairs
of bifurcations that are close to forming trifurcations. The
whole dataset is shown in fig. 8. Additional figures and
movies illustrating the iterative processes are found in the
supplementary material.

Small dataset. First, all three different algorithms were
ran on a smaller set consisting of the 4 synthetic planar trees
shown in the top row of fig. 8. Since the weighted midpoints

Figure 8. Seven synthetic planar trees.

and Birkhoff shortening algorithms potentially depend on
the order of the dataset, they were ran several times with
different randomly selected initial orders. In fig. 9(a) we
see the results of the weighted midpoints algorithm for all
possible orders on the dataset plotted together. In fig. 9(b),
we see the points in the Birkhoff shortening 5th iteration
on the same dataset. In fig. 9(c) we see the result of the
centroid algorithm. We clearly see that the three algorithms
give qualitatively very similar results, also with the different
initial orders used in the weighted midpoints and Birkhoff
shortening algorithms.

In order to experimentally check whether the found cen-
troid c actually minimizes the function Φ from eq. 1, we se-
lected 100 tree-shapes by adding random normal distributed
noise to the centroid edges, and evaluated Φ at each point.
The smallest value of Φ was found at the centroid, indicat-
ing that the found centroid actually is a mean.

Full dataset. The weighted means and Birkhoff short-
ening algorithms were also tested on the whole dataset in
fig. 8, again using different orders. The results are found in
fig. 10 and fig. 11. The centroid was left out of this experi-
ment, since already here, the complexity is too demanding.

Although the Birkhoff shortening and weighted mid-
points algorithms depend on the order of the dataset, we
clearly see that the attained results are robust with respect
to varying initial order. More importantly, we see that the
results of the faster methods are practically identical to the
centroid, which has good theoretical properties, but is ex-
pensive to compute. This is very comforting as it indicates
that we can compute usable means with the Birkhoff short-
ening and weighted midpoints algorithms. In the remainder
of this paper, we will only use these algorithms as the cen-
troid is computationally too demanding.

5.2. Leaf morphology

Our first example of natural tree-like structures comes
from biology. In botany, tree-like structures are found as
vasculatures in leaves, and are studied in order to under-
stand leaf morphology [7]. These structures form excellent
proof-of-concept examples, as the tree-structures are nec-
essarily planar, and hence the branches are ordered nicely
from left to right.

We extract vascular structures for a set of 10 ivy leaves,
see fig. 12, giving the planar trees shown in fig. 13. Us-
ing weighted midpoints for six randomly chosen dataset or-
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(a) (b) (c)

Figure 9. Comparison of algorithms on a set of four synthetic pla-
nar trees. (a) Results of weighted midpoints on the first four trees
from fig. 8. The algorithm was run for all different initial orders
and the results are plotted on top of each other. (b) Result of
Birkhoff shortening after 5 iterations, starting from the shown set
order on the first four trees from fig. 8. The 5th iteration points are
plotted on top of each other. (c) Result of the centroid algorithm
on the first four trees from fig. 8.

Figure 10. Weighted midpoints results for nine eight different ini-
tial orders on the dataset shown in fig. 8.

Figure 11. Birkhoff shortening results for three different orders on
the dataset shown in fig. 8.

Figure 12. An ivy leaf, with a subtree of its vascular tree.

Figure 13. Vascular structures from 10 ivy leaves.

ders we obtain the mean trees showed in fig. 14. Again, the
weighted midpoints mean trees initiated with different ini-
tial orders look nearly identical. Similarly, in fig. 15, we see
12th iteration Birkhoff shortening mean trees for a random
initial order, which are also very similar to the weighted
midpoints results. This is a clear indication that the two

Figure 14. weighted midpoints results for the leaves shown in
fig. 13 for five random dataset orders.

Figure 15. The Birkhoff shortening 12th iteration results for the
leaves shown in fig. 13 for a random dataset order.

algorithms compute the same mean.

5.3. Airway tree-shape modeling

The study of tree-like shapes is strongly motivated by
their presence in human anatomy, where they appear as de-
livery systems for fluids and air. Birkhoff shortening and
weighted midpoints means are computed for a dataset con-
sisting of 10 3D airway trees extracted from CT scans [13].
The trees represent the centerlines of the first four genera-
tions of the human airway tree as shown in fig. 16. The trees
are aligned at the endpoint of the root branch (trachea). As
with the planar trees, the two algorithms provide very simi-
lar means. Both algorithms, and Birkhoff shortening in par-
ticular, seem robust even for 3D trees.

6. Discussion and conclusion
We have studied the concept of means in non-Euclidean

spaces; generally in CAT (0) spaces and specifically in
spaces of tree-like shapes. We have shown that means exist
in CAT (0) spaces; a result which tells us that means exists
locally in spaces of tree-like shapes. The generality of the
result allows it to be transferred to other settings. In par-
ticular, our results should transfer to the space of attributed
graphs defined by Jain and Obermayer [10].

Usually, means can be found in non-Euclidean spaces
using standard optimization techniques such as gradient de-
scent. The computational complexity of the QED met-
ric, however, makes this approach infeasible for trees. We
consider three different algorithms for computing means
in Euclidean space: the centroid, Birkhoff shortening and
weighted midpoints. As these rely on on dividing geodesics
they are readily generalized to non-Euclidean spaces.

From a theoretical point of view, the centroid is the best
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Figure 16. (a) The ten airway trees in the dataset are shown in
gray; in black is one of the weighted midpoints means. (b) Five
weighted midpoints means computed from different initial orders.
(c) The ten airway trees in the dataset are shown in gray; in black is
the Birkhoff shortening mean. (d) Five Birkhoff shortening means
computed from different initial orders.

definition of mean shape. It exists, is unique and is, by
definition, invariant of the order of the dataset. Moreover,
numerical experiments indicate that it coincides with the
mean. The algorithm, however, has complexity O(N !),
which makes it too expensive to be of practical use. On
the other hand, the Birkhoff shortening and weighted mid-
points means are not quite as nice; while they converge to
a single point, this point may depend on the order of the
data. This is not ideal. However, experimental results indi-
cate that, up to numerical and approximative noise, differ-
ent orders actually give the same means for both methods.
Even better: these means seem to coincide with the well-
defined centroid. On this basis, we conjecture that for tree-
structured data, all algorithms compute the same mean tree.
As to which method works the best, the simplest seems to
win. Birkhoff shortening is an iterative procedure, which
makes it slow and vulnerable to accumulating errors. The
weighted midpoints mean, on the other hand, comes out as
a robust and efficient way of computing mean trees.

We have, thus, provided a practical algorithm for com-
puting mathematically well-defined “average trees”; some-
thing that has not been presented elsewhere in the literature.
This can potentially serve as a much-needed tool in medi-
cal image analysis, where airways and vascularization sys-
tems serve as reference structures in the human body. Shape
statistics on these structures may provide new insight into
how diseases such as COPD (smokers lung) affects the ge-

ometry of human anatomy.
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