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Abstract—An elementary characterization of the map underlying Harris corners,

also known as Harris interest points or key points, is provided. Two principal and

basic assumptions made are: 1) Local image structure is captured in an

uncommitted way, simply using weighted raw image values around every image

location to describe the local image information, and 2) the lower the probability of

observing the image structure present in a particular point, the more salient, or

interesting, this position is, i.e., saliency is related to how uncommon it is to see a

certain image structure, how surprising it is. Through the latter assumption, the

axiomatization proposed makes a sound link between image saliency in computer

vision on the one hand and, on the other, computational models of preattentive

human visual perception, where exactly the same definition of saliency has been

proposed. Because of this link, the characterization provides a compelling case in

favor of Harris interest points over other approaches.

Index Terms—Interest points, saliency, Harris corners, visual attention, low

probability, elementary characterization.
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1 INTRODUCTION

IMAGE matching, image classification, geometric hashing, image
registration, and many other computer vision and image analysis
techniques rely on and benefit from the possibility to find salient or
interest points in a scene [1], [2], [3]. Such points are assumed to
capture conspicuous structures in images that are descriptive
enough to solve the task at hand, thus avoiding the processing of
the entire image and allowing for rapid, potentially real-time
solutions to various computer vision and image analysis tasks.

Many different approaches to determining such interest points

have been proposed for which a couple of different underlying

principles have been suggested that, supposedly, drive the

interestingness of image locations. Starting from the work by

Förstner and Gülch [4] and Harris and Stephens [5], Triggs [6] casts

key-point detection in a rather nice and general framework that

relies on stability as the defining concept. At the basis of some

earlier approaches, there have been energy and information

theoretic considerations [3], [7], but also novelty and outlier

detection techniques have been studied as a way to formalize point

saliency [8], [9]. Most of the considerations are of a (differential)

geometric nature [1], [10], [11] and often focus on a description of

actual corners or vertices in the image [12], [13]. One should

realize, however, that these latter operators are not very specific

and respond to more general image structures.
The same goes for Harris interest points [2], [5], [6]. Originally,

the underlying map was considered as a measure of cornerness and

the points detected based on it have been referred to as Harris, or

Plessey, corners, but they are generally considered to indicate how

much a location stands out in an image and they do not necessarily
refer to features readily identifiable as corners or blobs [6] (see also
[14]). Further on in this paper, an illustration using the image in
Fig. 1, showing one of the well-known pop-out examples, provides
an, initially possibly surprising, additional example of the fact that
Harris is not only sensitive to corners or corner-like structures.

Harris interest point detection is a very popular scheme to find
salient points and many methods rely on the original formalism
or at least take the approach as a basis for further developments
[14], [15], [16], [17]. Overall, Harris interest points have been
shown to work relatively well in comparative studies involving
several other schemes.

1.1 Contribution and Suppositions

This paper shows that in an unsupervised, task-independent, and
uncommitted setting, plausible requirements can be imposed on
the interest point detection task that uniquely set apart the Harris
interest map from all other possible choices. It provides an
elementary characterization of the underlying map and allows
for further generalizations of the Harris interest point detector in a
principled way. The main assumptions made are, first, the lower
the probability of occurrence of image structure associated to a
certain image location is, the more interesting or salient this
location is (cf. [8], [9]) and, second, local image structure is
represented in an uncommitted way, merely using weighted raw
image gray values.

The first assumption in our characterization directly relates our
approach to particular task-independent, low-level theories of
computational, preattentive visual attention, which in various
settings have been demonstrated to correlate well to specific eye
tracking data (see [18], [19], [20], [21], [22]). The precise computa-
tional definition of saliency we rely on has been studied before in
the visual perception literature, in [18], [22], for instance. We see
this link with biological vision as part of a tradition in certain areas
of low-level computer vision [1], [11], [23], [24] and a point of
interest in its own respect.

The second assumption allows us to find a closed-form solution
for the density function over the distribution of all patches from a
single image. This finding, in combination with the first supposi-
tion, then permits us to derive a closed-form expression of saliency
as well. Finally, the latter expression turns out to be equivalent to
the original Harris interest map.

1.2 More on Related Work

As pointed out in the previous section, within the field of
computational visual attention, various attempts have been made
to provide a basic characterization of image saliency. These
characterizations are typically operationalizations of low-level
and preattentive saliency as more qualitatively described in, for
instance, [21] and [19]. The earlier mentioned [18] provides a good
example of this approach. It defines image locations to be salient if
the information content of a single observation is high, i.e., if minus
the logarithm of the probability is high. This, indeed, is equivalent
to some early approaches from the computer vision literature [8],
[9] which aim to find and exploit points with low probability.

An interest point detector that also relies on an information
theoretic formulation is presented in [25]. In this case, however, the
local entropy of the gray values is considered as a measure of
saliency and not, like [18] and related approaches, the entropy of a
certain location in the context of the other locations.

Further works from the area of visual perception rely on a
similar, if not exactly the same, operationalization as the one we
exploit [20], [22], cf. [26]. A slightly more elaborate and involved
scheme has been presented recently in [27] and an early reference
from this community is [28]. The latter provides a discriminative
instead of a more information theoretic approach but is still rather
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directly related to previous works mentioned. A further reference

is [29], which also takes a low probability point of view to saliency,

defining it to be proportional to one over the probability of

observing certain local features in a context, which therefore relates

directly to our approach as well. The definition of saliency we rely

on has been validated using actual human eye tracking data. We

should mention that various other proposals to quantifying low-

level image saliency exist that may not be directly related to the

one of interest in this work (see, for instance, [30], [31], [32]).

1.3 Outline

Section 3 formulates the aforementioned requirements in a more

precise way and formulates the main result in Section 3.3. To start

with, the same section introduces some necessary notation. Prior to

this, Section 2 briefly recapitulates Harris interest point detection

with a focus on the underlying map. Section 4 concludes the paper

and offers a discussion. For the sake of rigor, the proof of the

principal result from Section 3 is provided in the Appendix.

2 HARRIS INTEREST POINTS

Harris interest point detectors [2], [5] and its variations [4], [6], [14],

[16] are typical examples of the interest point detection techniques

currently employed in many computer vision methods and

applications, reaching even the surface of Mars [33].
For a two-dimensional image f : IR2 ! IR, the saliency map

underlying Harris interest points, denoted H, measures the local

two-dimensional gray-value variability in every location x. This is

quantified by means of the structure tensor T ðxÞ ¼ ðk � ðrfrf tÞÞðxÞ
and is taken to equal HðxÞ ¼ det T ðxÞ � � trace2 T ðxÞ, in which � is

a small nonnegative constant which artificially suppresses un-

wanted response to salient edge locations. In this paper, we merely

deal with the case for which � equals zero.
The convolution kernel k is applied entry-wise to the outer

product of the gradient. It is typically taken to be Gaussian. Given

the mapping, the interest points are normally taken from its local

maxima only, which models an inhibition of return mechanism (cf.

[21]) and prevents locations in the direct vicinity of the maxima

from being chosen as well. Our initial interest goes out to the map

H for general single-valued images from IRn to IR, though Section 4

discusses some further generalizations.

3 HARRIS AS VISUAL SALIENCY

To start with, we need to impose mild conditions on the images f

we consider. In fact, we will need a weak form of differentiability

and, therefore, assume f 2W 1;2ðIRnÞ, the Sobolev space of square-

integrable functions with square-integrable partial (weak) deriva-

tives [34]. This choice of function space is not a severe restriction

as, generally, operations cannot be applied directly to a raw image,

but typically are done on the image observed through a smooth

enough aperture, which results in a smooth enough image [35].

3.1 Image Structure

Second, we need to define how image structure is captured and

associated to every location in an image f . (Fig. 1 displays the

example image used throughout the remainder.) Generally, the

local image content in the image f is described by means of a

collection of features, e.g., outputs of linear filters or more complex

functions of the image f . Here, we aim at an uncommitted

description of image structure and avoid the use of specialized and

dedicated filter outputs to describe local image information. This

leads us to simply represent every image location x by the full raw

image modulated by a localized weighting function ! (like, for

example, in Fig. 2a), i.e., every location is represented by an image

patch as illustrated in Figs. 2b, 2c, and 2d.
To formalize this, we follow the notations from [36] and define

the translation operator �x by ð�xfÞðyÞ ¼ fðy� xÞ and mirroring

operator �f by �fðxÞ ¼ fð�xÞ. We can now express the map

�f : IRn ! L2ðIRnÞ, where L2ðIRnÞ is the space of square-integrable

functions on IRn, which relates every image position in IRn to a

weighted image patch, as

�f : x 7! ! � �x �f

¼ fa 7! !ðaÞ�x �fðaÞ ¼ !ðaÞfðx� aÞg;
ð1Þ

where ! is bounded, i.e., ! is in L1ðIRnÞ.
Typically, ! is chosen rotationally invariant because of the a

priori absence of any directional preference and the value !ðxÞ
would decrease with the distance of x from the origin. The latter

reflects that image intensities in the vicinity of the image location

under scrutiny are more important than more distant intensities. It

may be considered a rough way of dealing with loss of acuity with

increase of eccentricity.

3.2 Quantification of Saliency

The next step is to make explicit the definition of low-level saliency

employed by us and previously used in [8], [9], [18], [22], [29]. For

this, define Sf :¼ �f ðIRnÞ to be the set of all raw image patches and

denote a possible probability density on this domain by �. A

location x in an image is more salient than another location y if and

only if the probability of the image patch �fðxÞ associated to x is

less probable than patch �fðyÞ which is associated to location y,

i.e., if and only if �ð�f ðxÞÞ < �ð�fðyÞÞ. Now the next section

determines the particular form the density � takes under the

mapping �f , leading to the principal result of the paper.
Before coming to this next section, we point out that our

derivation deals in principle with a single image. The same relation

between Harris and saliency, however, holds in case we consider a

finite set of generic images, ff1; f2; . . .g. For such a generic set, it

holds that all sets of raw image patches Sfi are disjoint in patch

space and so all images can be treated separately, irrespective of

the other images in the set.
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Fig. 1. Gray-value image on which some points in our approach are exemplified.



3.3 Main Results

The collection of patches gives rise to a density on Sf � L2ðIRnÞ
just as much as feature vectors in a feature space induce a density

according to their distribution in that space. Now, the following

theorem makes explicit how the raw image patches are distributed

when we know the probability density function p on the image

domain IRn. It is noted that, in contrast to previous work, the

density is not estimated but can actually be calculated in closed

form in this case.

Theorem 1. Assume ! > 0. Then, a density p on the image domain IRn,

with respect to the Lebesgue measure of IRn, induces, under the

mapping �f , a density � on Sf , with respect to the measure induced
by the L2-metric, given by

� ¼ pffiffiffiffiffi
H
p � ��1

f ; ð2Þ

where the Harris map H is the determinant of the structure tensor T
obtained by convolving rfrf t with the kernel !2.

Now, what we are chiefly interested in is which patch
probability is associated to every location, as this is, by definition,
inversely relates to its saliency. The probability we are looking for
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Fig. 2. Representing local image structure by patches: (a) an example of a localized weighting function !; (b) example images locations A, B, C, and D from which
patches are extracted; (c) modulations of original image, ! � �x �f, for the four locations (displayed in a single image); (d) enlarged versions of the four final example
patches.



equals �ð�fðxÞÞ for every image location x, i.e., � � �f is the
probability density of interest. Now, mainly rewriting the result
from Theorem 1 leads in fact to the principal result of our paper.

Corollary 1. Provided no image location is a priori preferred over any
other, meaning p is chosen to be uniform, the Harris map H is
inversely proportional to the square of � � �f .

Or, in other words, the Harris map provides a measure for the
saliency of particular image locations, as the latter is inversely
proportional to the probability of observing a specific image
structure. As an illustration, Fig. 3a shows the Harris map H for
the image in Fig. 1, while Fig. 3b displays the log probability
(log �� � �f ) for every image location of the same image. The
location of the pop-out in Fig. 1 is clearly visible in both Figs. 3a
and 3b. The latter also shows, though rather vaguely, an increase in
saliency of the vertical and dashed white lines against the black
background. Their saliency, however, does not compare to the
single white horizontal stroke. In addition, Figs. 1, 2, and 3 nicely
illustrate that Harris maps indeed respond to certain structures
that are not corner-like.

4 DISCUSSION AND CONCLUSION

An elementary, probabilistic characterization of the map under-
lying Harris interest points has been given. One appealing aspect
of our characterization is that it connects this well-known operator
from computer vision to some of the probabilistic approaches to
computational visual attention as currently emerging in the
literature on preattentive visual perception. Another attractive
feature is that the theory, while making minimal assumptions,
provides one of the few generic, basic, and theoretical considera-
tions that may lead one to favor one interest operator over the
other, making a compelling case in favor of Harris key points.

A core assumption in our characterization is, first of all, that
image structure is represented in an uncommitted way and can
simply be taken to be a weighted image patch ! � �x �f for every
image location x. For this to hold, the convolution kernel k

employed in Harris interest point detection, should be chosen
equal to the square of this nonnegative weighting function !. In a
way, this choice of straightforward features avoids a bias to
measuring particular, dedicated, and involved image structures.
Choosing more complicated, nonlinear, local image descriptors
may certainly be desirable in particular situations (see below), but
in these cases we cannot link saliency directly to Harris anymore
(not to mention that our current derivation possibly cannot be used
directly anyway). Thus, our choice of image descriptors is essential
and it is precisely the uncommitted choice employed in this work
that leads to the Harris interest map.

Certain types of weighting schemes can be justified to some
extent. For instance, an isotropic kernel !, whose value drops off
with the distance to its origin reflects the fact that close by values in
a scene are likely to carry more information about the central
location than remote positions. Arguments that would justify one
and only one specific shape are, however, lacking thus far.
Nonetheless, one may suspect that a Gaussian weighting is the
favorite candidate (in this case, the kernel k ¼ !2 in the Harris map
would also be Gaussian).

The other principal postulate is that the low-level, task-
independent saliency of an image location is inversely related to
the probability associated to the image structure present. In a way,
this makes explicit that the interestingness of an observation is
related to how often such a configuration is observed, how
uncommon it is, how surprising or unlikely. It is also a principled
measure used to decide, for instance, on the novelty or outlierness
of an observation [37]. This requirement, we therefore believe, is a
natural one, and in the design of different saliency maps this may
be the principle that remains unaltered. In that case, the idea
would be that with additional knowledge about the key-point
detection task, it should be the image descriptor that is changed.

For example, knowing that changes in absolute luminance
should not alter the saliency measure, such additional knowledge
could be integrated by making the image patch representation
more committed and turning ! � �x �f , from (1), into a luminance-
invariant version in some manner. Obviously, various ways to
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Fig. 3. Quantities related to saliency for Fig. 1: (a) displays the Harris map H and (b) the logarithm of the probabilities of every patch associated to every image position.
As shown (see main text), (a) and (b) are related based on 1=

ffiffiffiffiffi
H
p
/ � � �f . In (b) one is able to see not only the location of the pop-out, but also the saliency response

caused by the dashed vertical lines against the black background.



enforce luminance-invariance can be thought of and additional
arguments might be needed to prefer one approach over the other.
Another relevant, yet possibly nontrivial, extension is to use our
scheme for key-point detection not only over spatial location but
also over the so-called local scale and integration scale of the
Harris operator, a topic that has been considered previously in, for
instance, [14] and [38].

There are two examples from the literature already, in which
our approach would provide a similar elementary characterization
for the saliency map suggested. With minor alterations to the
setting described in this paper (considering a spatiotemporal
weighting function ! and multichannel images, respectively),
space-time interest operators [16] and Harris color operators [17]
can be derived, i.e., two instances that indeed illustrate the broader
applicability of the approach presented. Another one is defining a
principled three-dimensional interest operator, which, not surpris-
ingly, would simply be the determinant of the three-dimensional
structure tensor, reminiscent of what can already be found in the
literature [39].

All in all, this work rigorously demonstrates the elementary fact
that a perception-derived, low-level, probabilistic criterion to-
gether with an uncommitted approach to describing local scene or
image content characterizes the saliency map underlying one of the
most used interest point detectors within computer vision, i.e.,
Harris interest point detector.

Let us finally note that the definition of visual saliency
employed in this work is indeed task independent and low level
and for particular computer vision tasks, potentially more power-
ful interest point detectors might be constructed on the basis of
more high-level computational theories of visual search and
attention. These theories extend the approaches mentioned in
Section 1.2, combine top-down, task-dependent, and bottom-up
mechanisms, and go beyond preattentive vision (see, for instance,
[21], [29], or [40], [41], and possibly [42] for a more general
exposition). These ideas, however, have not yet crystallized as
much as is the case for preattentive vision. Nonetheless, an
attentive, top-down, and high-level Harris map may be imminent.

APPENDIX A

MAIN PROOF

We here provide a rigorous proof of Theorem 1. The proof relies on
elementary functional analysis, but may not be of interest in every
single detail to all readers. Therefore, we first give the following
gist of the proof.

Assume that the map �f : IRn ! L2ðIRnÞ is a C1-embedding and
let Sf ¼ �f ðIRnÞ be the set of raw image patches. In this case, this
set Sf carries the structure of a submanifold of L2ðIRnÞ and �f

becomes a global parametrization of Sf , i.e., a diffeomorphism
between IRn and Sf . The restriction of the standard scalar product
of L2ðIRnÞ given by hf; gi2 ¼

R
IRn fg dx, endows Sf with a structure

of Riemannian manifold and the expression gf of the Riemannian
metric in the global coordinate system IRn provided by �f is the
structure tensor T and H is precisely the Gram determinant
detðgfijÞ of gf . From this, Theorem 1 and its related corollary follow
easily, using the change of variables theorem for manifold integral
calculus [43].

In fact, this is a situation similar to the one encountered in
standard probability theory: �f would map one vector of random
variables to another and, under certain conditions, the probability
density of the one can be expressed in terms of the other using the
change of variable theorem. The condition we need to be fulfilled
in our setting is that �f is a differentiable embedding. The main
point is to prove that this is indeed the case.

The actual proof of Theorem 1 is thus split up in two sections.
First, we establish in Proposition 1 the link with the structure
tensor and the measure theoretic results from which Theorem 1

follows. The second section then considers the necessary require-

ment for �f to be an embedding.

A.1 From Embedding to Structure Tensor

Proposition 1. Assume that �f is an embedding.

1. The metric gf on IRn induced by the standard Hilbertian
L2-metric on Sf :¼ �f ðIRnÞ is the !2-structure tensor of f :

gfijðxÞ ¼ !2 � fxifxj
� �

ðxÞ;

that is,

gf ðxÞ ¼ !2 � rfrft
� �

ðxÞ:

2. The canonical measure associated to the Riemannian
structure of Sf is, when expressed in the global coordinate
system �f , given by

�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det
�
gfij
�q
�n;

where �n is the Lebesgue measure on IRn and detðgfijÞ is the

Harris Map H.

For x 2 IRn, y ¼ �fðxÞ, we denote by TxIR
n the tangent space of

IRn at x (one has of course TxIRn � IRn), TySf the tangent space of Sf
at y and dx�f the differential map TxIR

n ! TySf of �f at x. In the

standard coordinate system of IRn, this is the matrix of partial

derivatives of �f and a direct calculation shows that
@�f

@xi
ðxÞ ¼def

dx�fei ¼ �fxi
ðxÞ ¼ !�xfxi where fxi is the partial derivative of f

with respect to xi, and by definition of gfij,

gfijðxÞ ¼ h!�xfxi ; !�xfxj i2

¼
Z

IRn
!2ðaÞfxi ðx� aÞfxj ðx� aÞ da

¼ !2 � fxi fxj
� �

ðxÞ;

which establishes the result in point 1. The second point is a classical

and elementary result from Riemannian geometry, see [44], for

instance.
Theorem 1 then follows immediately from point 2 of the above

proposition. In order to finish the proof, we thus need to prove that

if ! remains strictly positive, then �f is indeed a differential

embedding as soon as f carries some information, i.e.,

f 6¼ 0 2W 1;2ðIRnÞ, and this is established in the following theorem:

Theorem 2. Assume ! 2 L1ðIRnÞ and is strictly positive and f 2
W 1;2ðIRnÞ is nonzero, then �f is a C1-embedding of IRn into L2ðIRnÞ.

A.2 Proof of Theorem 2

We start by describing the different, unsurprising steps:

1. �f is continuously differentiable,
2. �f is an immersion,
3. �f is into, and
4. �f is an homeomorphism onto its image.

Before proving them, we first notice that the mirroring

operation f 7! �f is linear, continuous, and in fact a self-inverse

isometry of L2ðIRnÞ. The translation �x is also an isometry, with

inverse ��x, and we have the following useful result:

Lemma 1. Let f 2 L2ðIRnÞ and x 2 IRn.

1. If f ¼ �xf , then either x ¼ 0 or f ¼ 0 a.e.,
2. If f ¼ ��xf , then f ¼ 0 a.e.

For point 1: Assume x 6¼ 0. Then, for all k 2 ZZ, fðaÞ ¼ fðaþ kxÞ
a.e., but fðaþ kxÞ ! 0 a.e. when jkj ! 1 since kaþ kxk ! 1 and
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f 2 L2ðIRnÞ. Therefore, f ¼ 0 a.e. The proof of point 2 is similar,

apart from the case x ¼ 0, which trivially implies that f ¼ 0 a.e.
The continuous differentiability of �f will follow from the more

general lemma stated below.

Lemma 2. Let g 2 L2ðIRnÞ. Then, �g is continuous. Let x; y 2 IRn. Then,

k�gðxÞ � �gðyÞk2
2 ¼

Z
IRn
!2ð�x�g� �y�gÞ2 dx

� k!2k1k�x�g� �y�gk2
2

ð3Þ

ðby H€older inequalityÞ
¼ k!2k1k�g� �z�gk

2
2

ð4Þ

ðwith z ¼ y� xÞ ð5Þ

and, since mirroring is an isometry, it is enough to show that z 7! �zg

is continuous; a classical result shows that it is in fact uniformly

continuous for g 2 LpðIRnÞ; p 	 1 (see, for instance, [45]).

We mentioned already that @�f=@xi ¼ �fxi
, where fxi is the

partial derivative of f with respect to xi. So, in order to show that �f

is C1, we apply the previous lemma to the fxis, they are in L2ðIRnÞ
since f 2W 1;2ðIRnÞ. Its partial derivatives being continuous, �f is C1.

Next, we come to show that �f is an immersion, i.e., that for

each x 2 IRn, the differential dx�f of �f at x is into. Pick an x 2 IRn

and v ¼ ðv1; . . . ; vnÞ 2 IRn such that dx�fv ¼ 0. dx�fxv is the

function
Pn

i¼1 vi!�x
�fxi . Assuming that this function is 0 2 L2ðIRnÞ

and since ! > 0, we obtain

0 ¼
Xn
i¼1

vi �x �fxi ¼ �x
Xn
i¼1

vi �fxi

 !
¼ ��x

Xn
i¼1

vifxi

 !_
; ð6Þ

and thus
Pn

i¼1 vifxi ¼ rf � v ¼ 0 2 L2ðIRnÞ since �x is an isometry.

If v 6¼ 0, then one can assume without loss of generality that v ¼
ð1; 0; . . . ; 0Þ and fx1

¼ 0 2 L2ðIRnÞ and thus f is constant along lines

parallel to the x1 axis. It follows that f ¼ 0 a.e. in L2ðIRnÞ.
In the third step, we prove that �f is into. First, given s 2 Sf , we

compute, for x 2 IRn, the “cosine” map

csðxÞ ¼
hs;�f ðxÞi2
ksk2 k�fðxÞk2

:

Then, we claim that, for all s 2 Sf , cs has a unique maximizer xðsÞ
that satisfies �fðxðsÞÞ ¼ s, xð�fðxÞÞ ¼ x, from which it follows that

�f is into.
From the Cauchy-Schwarz inequality, csðxÞ � 1 and if

s ¼ �f ðyÞ, this maximum is reached at x ¼ y. Let �x 2 IRn

maximizing cs, i.e., csð�xÞ ¼ 1. Then, once again from the Cauchy-

Schwarz inequality, �fð�xÞ and �f ðyÞ ¼ s are linearly dependent:

9� 6¼ 0, �!��x
�f ¼ !�y �f , and since ! > 0 and mirroring is an

isometry, we have ���xf ¼ �yf . Since ��x and �y are isometries of

L2ðIRnÞ, taking the L2-norm on both sides implies j�j ¼ 1, i.e., one

has �y��xf ¼ 
f . Then, � ¼ 1 and �x ¼ y by Lemma 1.
Because IRn is not compact, it is not enough to check that �f is

into in order to end the proof of the theorem. We need to check that

�f is an homeomorphism onto its image, and we do that by

directly showing that the inverse map �f : Sf ! IRn is continuous.

This inverse map is defined by

�fðsÞ ¼ argmax
x2IRn

csðxÞ:

Given s ¼ �f ðxÞ, let ðsnÞn, sn 2 Sf , be a sequence converging to s in

L2-norm, such that limn!1 �f ðsnÞ ¼ y. Then, �xf ¼ �yf , and thus

�x�yf ¼ f and, since f 6¼ 0, we get that x ¼ y by Lemma 1(i), i.e.,

lim
n!1

�fðsnÞ ¼ �fðsÞ

and this concludes the proof of Theorem 2.
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