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Abstract This paper deals with restricting curve evolution
to a finite and not necessarily flat space of curves, obtained
as a subspace of the infinite dimensional space of planar
curves endowed with the usual but weak parametrization in-
variant curve L2-metric.

We first show how to solve differential equations on a fi-
nite dimensional Riemannian manifold defined implicitly as
a submanifold of a parameterized one, which in turn may be
a Riemannian submanifold of an infinite dimensional one,
using some optimal control techniques.

We give an elementary example of the technique on a
spherical submanifold of a 3-sphere and then a series of
examples on a highly non-linear subspace of the space of
closed spline curves, where we have restricted mean cur-
vature motion, Geodesic Active contours and compute geo-
desic between two curves.
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1 Introduction

Curve evolution1 has now become a standard tool in Com-
puter Vision. It has been used for tracking interfaces, reg-
istration, active contour algorithms for segmentation, etc.
[1–4]. Curve evolution involves deformation or motion of
a curve via a given velocity vector field defined on a space
of curves that share some common structures. Curves can be
manipulated implicitly as the zero-level set of a given func-
tion for instance, or explicitly via a parametrization. In this
paper we are interested in the latter. We work on the space of
smooth parametrized curves, which is a Riemannian mani-
fold.

The general curve evolution equation is given as,

∂c

∂t
(p, t) = v(p, t)�n(p, t) + w(p, t)�t(p, t) (1)

where c(−,−) is the family of curves satisfying the equa-
tion, p is the parameter along a curve, t is the time parame-
ter, v is the scalar velocity in the unit normal direction �n of
the curve, w is the scalar velocity in the tangential direction
�t to the curve. In [5], the authors show that the tangential
component of the velocity affects only the parametrization
of the curve, thus can be omitted and we get

∂c

∂t
(p, t) = v(p, t)�n(p, t). (2)

These equations arise either as a ‘direct design’ approach
where the velocity vector is given according to some appli-
cation specific requirement, or as a gradient descent scheme
in order to minimize an energy functional E : S → R, where
S is the space of curves in which we are interested.

1We deal with planar curves only.
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Only relatively recently emphasis was set on the fact that
the gradient of the functional depends on the definition of
the inner product on S , as noticed by [6, 7] making this kind
of flow fundamentally dependent of the metric. Even when
equations arise from a direct design and do not involve the
notion of gradient, their numerical implementation may re-
quire understanding of the metric, as one may leave the man-
ifold due to small, but non infinitesimal steps.

Probably the most used inner product in applications is
the standard reparametrization invariant L2 inner product
between normal curve deformations v1 and v2 of a curve
c(p):

〈v1, v2〉c =
∫ N

0
v1(p)v2(p)|c′(p)|dp. (3)

As it will play a fundamental role in the sequel, we denote
it as 〈−,−〉c , where c is the point, i.e. a curve, at which it
is computed. When there is no ambiguity, we may omit the
subscript c. This inner product was used for the Geodesic
Active Contours of Caselles et al. [8].

Sundaramoorthi et al. in [9], as well as Charpiat et al.
[10] have used Sobolev inner products for active contour
segmentation, thereby avoiding local minima amongst other
advantages.

Curve evolution is also implicitly used in applications
like shape matching and classification based on shapes,
since it involves deforming or evolving one shape into an-
other. The space of curves S under consideration may vary
from application to application, but will not necessarily be
linear and flat, and non flatness makes it an ideal ground for
use of differential geometric tools.

Michor and Mumford [11] work on the space of smooth
embeddings Emb(S1,R

2) and smooth immersions
Imm(S1,R

2). The difference between the two is that smooth
embeddings are such that the closed curves obtained by
embedding the circle into the plane, should have the same
topology as S

1, while immersed one can have self intersec-
tions. When identifying reparametrization, the two spaces
above give rise to two spaces of curves:

Be = Emb(S1,R
2)/Diff (S1)

and

Bi = Imm(S1,R
2)/Diff (S1)

(note Be ⊂ Bi ). In [11], the authors prove that the L2

metric is a weak Riemannian metric: it degenerates on
Be and Bi , i.e. the geodesic distance between any two
curves is zero. Given a curve, one can perturb it using
infinitesimal deformation with very high frequencies to-
wards any other given curve. These deformations are in-
finitely close to any curve and can be used to build arbi-
trarily short paths between any two curves, i.e. the corre-
sponding geodesic distance degenerates. This implies that

one cannot compute distance between shapes using this in-
ner product. This of course does not prevent other algo-
rithms to work fine, this is the case for the above mentioned
Geodesic Active Contours, although even in that case, the
weak structure is the cause of potential spurious local min-
ima.

There have been several strategies to overcome this hur-
dle. One is to change the metric on the space of curves, for
e.g. in [9], the authors use a Sobolev metric and in [11] the
authors use a curvature dependent metric, both of which re-
strict the spatial variation in the deformations. In [12], au-
thors use a Sobolev-type metric that is also tailored for simi-
larity transform, similar to [10]. Glaunes et al. [13] represent
curves as a linear functional on vector fields over R

d and
compare curves by proposing norms over the dual space of
vector fields on R

d . These norms depend on spatial deriv-
atives, which limit the variation of the vector fields, pro-
hibiting high frequency variations. In [14, 15], a group the-
oretic approach is used. The set of admissible deformations
forms a group and then the problem to compute geodesic
distance between two given curves is reduced to computing
the geodesic distance between two members of the group
of deformations that map one curve into another. They also
consider spatial derivatives on infinitesimal deformations for
constructing the inner product, thereby limiting the spatial
variations. Also using a group theoretic approach, Micheli
constructs in [16] manifolds of landmark shapes in which
landmark geodesic curves are obtained via coupling with
diffeomorphisms. Related to landmark based shapes are the
polygonal shapes used by Unal et al. in [17], but no Rie-
mannian structure is directly used.

Landmark manifolds are finite dimensional and the as-
sociated Riemannian metric cannot be weak. The same will
hold on a finite subspace of the infinite dimensional space
of all curves. The space of closed curves with finite Fourier
expansion is used in [18] to represent curve deformations.
There is an upper bound on the frequency of deformations
that one can introduce in the finite dimensional case and
hence the metric does not degenerate on this subspace. The
finite dimensional case is also important since even though
theoretically the intended curve evolution happens on the
infinite dimensional space of all curves, but when imple-
mented on a computer, it is restricted to some finite dimen-
sional subspace. In [19], the authors restrict curve evolution
to linear finite dimensional subspace of curves. The present
work is an extension of this one, using a finite dimensional
subspace of Bi . Due to both the structure of Bi and the type
of restrictions we may impose, this subspace will often be
curved. We work on problems where such specifications, i.e.
finite dimensional curve spaces are given implicitly.2

2Explicit constraints give a parametrization of the subspace, which can
be used to compute standard differential geometric maps like the expo-
nential map, and thus solve the problem.
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The problem (of restricting curve evolution) corresponds
to solving an ordinary differential equation on a manifold S ,
of the form

dc(t)

dt
= F(c(t)), F (c) ∈ Tc S (4)

where Tc S is the tangent space of S at c. In numerical prob-
lem S is embedded into a larger space T such that Tc S can
naturally be represented, at least locally as a subspace of T ,
while T is normally itself an open of a numeric space R

n.
The forward Euler step

c + δt
dc

dt

will generally leave S and we need a way to project back
to it. Hairer [20] investigates several projection methods to
get back to the manifold. Srivastava et al. [18] use a gradi-
ent descent approach to project curve deformations from the
tangent space of the given subspace of curves, to curves in
the subspace.

In our work, we directly exploit the L2-metric of the
space of immersed closed curves to perform the natural pro-
jection, given by the Riemannian exponential map, it com-
putes the target geodesic path leaving from c with initial ve-
locity δtdc/dt and of length exactly ‖δtdc/dt‖. We derive
an formulation of it for the case where T is not endowed
the usual flat metric. From this formulation, one obtains by
proper differentiations, a system of differential equations
that computes parallel transport. This is the main ingredi-
ent of the shooting method used to compute the Riemannian
Log map, which allows to compute geodesic between two
given points, in our case minimal deformations from curve
c to curve d .

We apply it to the subspace of closed B-spline curves
consisting of curves with equidistant neighboring node (im-
ages of knots in the curve), with the L2 metric induced
from Bi .

This paper is organized as follows. In Sect. 2 we state
and describe the projected evolution problem and describe
our algorithm from a general point of view, with partic-
ular emphasis on computation of Riemannian Exponential
maps, Log maps and parallel transports. We also give a toy
example demonstrating our method towards the end of the
same section. In Sect. 3, we describe a particular subspace
of spline curves that we are interested in, and derive the nec-
essary formulae. In Sect. 4, we give some results of restrict-
ing the curvature flow and geodesic active contours to the
subspace described in Sect. 3. We also demonstrate the com-
putation of a geodesic between two curves and we conclude
in Sect. 5. For the reader’s convenience, we have collected
basic facts from Riemannian geometry in Appendix.

2 Projected Curve Evolution

We consider the following situation. A Riemannian mani-
fold T possibly infinite dimensional is given with a sub-
manifold S of dimension N , that is described via a chart g :
S → U ⊂ R

N , and a submanifold V of S defined as F−1(0)

where F : S → R
m is a submersion (we could also work

with its representation in parameters space F̃ : U → R
m).

We have of course in mind the case where S is a finite di-
mensional submanifold of T := Bi with the induced metric.
The submersion condition means that the Jacobian JF(x)

of F is onto at every x ∈ V , this is this condition that makes
V a smooth submanifold of S (see [21]). V is then endowed
with the metric induced by S to become a Riemannian sub-
manifold of S .

In Sect. 3, we consider a slightly more complicated hi-
erarchy with the space of spline curves, but we defer the
discussion to that particular section.

Then, given an initial point c ∈ V and an evolution equa-
tion of the form

dc

dt
= F (c), F (c) ∈ Tc T (5)

we require a solution c(t), such that c(t) ∈ V for t ≥ 0.
Obviously the velocity vector may evolve a given point out
of V , hence we need to modify (5) by introducing some pro-
jection steps to ensure that the solution stays in V . In brief,
one iteration of our algorithm consists of the following three
steps:

1. Compute vS = �Tc(t) S F (c), the orthogonal projection of
velocity to the tangent space of S at c(t).

2. Compute vV = �Tc(t)V vS , the orthogonal projection to
the tangent space of the implicitly defined subspace V .

3. Compute c(t + dt) = ExpV
c(t)(vV dt), the V -exponential

map3 to map the velocity vector from the tangent space
of V to the subspace V .

In our main application, S will be a submanifold of Bi

and its metric will be induced by the reparametrization in-
variant L2-metric (3). That is, even though via the local co-
ordinate system g, elements of S can be seen as points of
R

N , they carry a non flat metric. Since we are now dealing
with finite dimensional manifolds, we will not encounter the
geodesic distance degeneracy proved in [11] for the “stan-
dard” inner product defined in (3) as the corresponding geo-
desic distances on S and V must give back the topologies
of these spaces (see [21]). This can be explained by the fact
that varying one parameter of the parametric representation
of the curve induces a non-local variation of the curve with
curvature change bounded with parameter change.

3We will drop the superscript V from ExpV in the sequel when there is
no ambiguity.
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2.1 Orthogonal Projections

The two projections of step 1 and 2 above are of the same
nature and are local versions of the classical orthogonal pro-
jection on a finite dimensional subspace of a Hilbert space
[22]: given a Riemannian manifold M , a finite dimensional
submanifold N and n ∈ N ⊂ M , one has TnN ⊂ TnM and
thanks to the Riemannian structure, an orthogonal projection
�T M

T N at n that can be computed as follows. Let v ∈ TmM

and {e1, . . . , ek} a basis, not necessarily orthogonal of TnN .
Then vN = ∑k

i=1 αiei is the projection of v if and only if
v − vN is orthogonal to TnN as a subspace of TnM i.e.

〈v − vN, ei〉n = 0 ∀i = 1, . . . , k

(〈·, ·〉n is the inner product in TnM that comes from the Rie-
mannian structure). Set G := (〈ei, ej 〉n)ij , this is the Gram
matrix of e = (e1, . . . , ek). Then the projected velocity is
given by

vN = �T M
T N (v) =

∑
i

[G−1(〈v, e〉n)]i ei . (6)

Given c ∈ V ⊂ S ⊂ T , we apply this first to c ∈ S ⊂ T ,
as S has finite dimension, to get the projection �Tc(t) S of
step 1. The tangent space TcV is the kernel (or null-space)
of DF(c) and also of finite dimension and we apply (6) to
this configuration and get vV = �Tc(t)V .

2.2 Exponential Map on the Submanifold V

Even if TcV can be seen as a subspace of S , a standard
Eulerian step

c(t + dt) = c(t) + vV dt

where dt is a finite time step will result in c(t + dt) /∈ V

generally. We use the exponential map to project the tangent
vector vV dt to V , i.e.,

c(t + dt) = Expc(t)(vV dt).

Computing the Exponential map on implicitly defined man-
ifolds is not straightforward as in the case when manifolds
are given via local parametrization (such a computation
boils down to solving a classical second order ODE). We
obtain instead the Exponential map via Optimal control the-
ory [23, 24], along the lines of Dedieu and Nowicki [25]. In
their setting V is a submanifold of R

N , the latter endowed
with its usual Euclidean inner product whereas in our case,
we consider more complex structures on S .

We assumed in the introduction of this section that we
had a local coordinate system g : S → U ⊂ R

N , through
which we now assume S to be an open subset of R

N . Its

Riemannian structure is given by the smooth family of met-
rics

x ∈ U �→ G(x)

with G(x) a symmetric and positive definite N × N matrix.
A curve x(t), t ∈ [0,1] is a geodesic on V if it minimizes

the constraint length

�(x) =
∫ 1

0
‖ẋ(t)‖G(x(t)) dt, x(t) ∈ V, ∀t ∈ [0,1]

where ẋ(t) is the velocity of x at time t , ‖ẋ‖G(x) =√
ẋT G(x)ẋ is the length of vector ẋ (we will often omit

from now the parameter t). Such a curve is equivalently a
minimizer of the constrained curve energy [26]

E (x) = 1

2

∫ 1

0
‖ẋ‖2

G(x) dt, F (x(t)) = 0.

Introducing the constraint via the Lagrange multiplier λ :=
λ(t) ∈ R

m, we have now the Lagrangian of the system

L(x, ẋ, λ) = 1

2
ẋT G(x)ẋ − λ · F(x)

which provides the second-order Euler-Lagrange equation

d

dt

∂L
∂ẋ

− ∂L
∂x

= 0. (7)

Instead of solving this equation, we use the Hamiltonian for-
mulation of [25] and define our Hamiltonian to be

H(p,x,μ) = −1

2
ẋT G(x)ẋ + pT ẋ +

m∑
i=1

μiJFi(x)ẋ (8)

where p = p(t) is an auxiliary variable, JF(x) is the Ja-
cobian of F , μ = (μ1(t), . . . ,μm(r)) is a Lagrange multi-
plier. The first term in the Hamiltonian is the cost function
(square of velocity length in this case) to be minimized and
the last term is the constraint stating that the path should re-
main in V , i.e. dFi(x, ẋ) = ∇Fi(x)T ẋ = JFi(x)ẋ = 0, ∀i.

Pontryagin’s maximum principle gives the necessary
conditions for a maximum:

∂H

∂ẋ
= 0, (9)

ṗ = −∂H

∂x
. (10)

Compared to (7), this is a system of first-order equations,
that can be solved by standard to more advanced ODE
solvers. In particular, as it comes from a Hamiltonian, ac-
curate symplectic solvers can be used.

Equation (9) in our case gives

G(x)−1p = ẋ − JGF(x)T μ
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where JGF(x) is the Jacobian of F with respect to the met-
ric G(x) and is given as JGF(x) = JF(x)G(x)−1 (i.e., it is
a matrix containing transpose of the gradient vector of the
individual functions Fi , with respect to the metric G).

We know that ẋ ∈ TxV and JGF(x)T μ ∈ NxV , the nor-
mal space of V at x. Therefore, we have

ẋ = �G
TxV (G(x)−1p) (11)

the orthogonal projection to the tangent space with respect
to the inner product G(x), and

−JGF(x)T μ = �G
NxV (G(x)−1p),

μ = −(JGF(x)T )†�G
NxV (G(x)−1p) (12)

where (JGF(x)T )† is the pseudo-inverse of JGF(x)T for
the metric G [25, 27], we call it G-pseudo-inverse in the
sequel, and we show how to compute it at the end of this
section. From (10), we get

ṗ = 1

2
ẋT DGx(x)ẋ −

m∑
i=1

μiHFi(x)ẋ (13)

where DGx(x) is the derivative of G(x) with respect to x

and HFi(x) is the Hessian of Fi at the point x. Note that
DG and the HFi are directly related to the curvature of S
and the extrinsic curvature (second fundamental form) of V

in S.
Now, given the initial conditions:

⎧⎪⎨
⎪⎩

ẋ(0) = u

μ(0) = 0

p(0) = G(x(0))u

one computes the Exponential map using finite difference
approximations of (11), (12) and (13).

The G-pseudo-inverse in (12) is computed as follows. Let
us denote JGF(x)T by A. Since AT is onto, A is injective.
For an injective matrix A, the pseudo-inverse is given as,

A† = (A∗A)−1A∗

where A∗ is the adjoint operator of A. By definition of
the adjoint operator, we have for x ∈ R

m (with usual in-
ner product) and y ∈ R

N (with inner product given by G,
〈x, y〉G = xtGy),

〈Ax,y〉G = 〈x,A∗y〉Rm

which gives

A∗ = AtG.

So,

(JGF(x)T )∗ = JGF(x)G(x) = JF(x)

and the pseudo-inverse is given as

(JGF(x)T )† = (JF (x)G(x)−1JF(x)T )−1JF(x). (14)

These three projection steps are repeated for every iteration
of the curve evolution.

2.3 Log Map Using Parallel Transport

Although Log map may not be required for evolving curves,
it is necessary for computing geodesics between two given
shapes.

While exponential maps are defined by initial value prob-
lems (IVP), the computation of geodesic between two points
is a Two-Points boundary value problem (TPBVP) and
shooting methods [28, 29] have been developed to solve
these problems by transforming TPBVPs into IVPs, by an
iterative procedure that refines estimates of initial values so
that the resulting IVP solution will reach the boundary value.

This is what we will use here in order to compute the Log
map between points in our implicitly defined space equipped
with a non-Euclidean metric. The procedure consists of up-
dating an initially chosen tangential direction with a vector
obtained by parallel transporting an approximate error vec-
tor between the current point (obtained by the Exp map of
the tangent direction in the current iterate) and the target
point. A typical step is illustrated in Fig. 1 where the geo-
desic in V joining points q and q̃ is sought.

We describe the step in greater details. First the notations
used in the figure. To avoid ambiguities, let ExpS denote the
exponential map in S and ExpV the exponential in subman-
ifold V . Similar notations LogS and LogV are used for the
Riemannian Log maps. A geodesic joining points p and p′
in S is denoted by γS (p,p′).

Assume then that vn is the current estimate of the needed
initial velocity to reach q̃ in V and qn = ExpV

q vn its expo-
nential. If qn �= q̃ we want to build an update of the initial
velocity vn that takes into account the estimation error be-
tween qn and q̃ . We approximate this error in several steps.
First we consider the geodesic γS (qn, q̃) in S linking qn and
q̃ and the log map un = LogS

qn q̃ . If the extrinsic curvature of
V in S is not too “large”, the orthogonal projection of un on
TqnV provides an approximation of the V-Log map LogV

qn q̃ .
This however requires the computation of γS (qn, q̃), which
is a second-order TPBVP, but can be heavy to solve. Instead,
assuming that the intrinsic curvature of S in a neighborhood
of qn containing q̃ is not too large, making the metric slowly
varying, we can approximate γS (qn, q̃) by the straight-line
segment (the dotted line of the figure) joining qn and q̃ . We

then project the vector
−→
qnq̃ to TqnV , this projection being

denoted by wn. Now that we have an estimate of the error at
qn on the form of the vector wn, we need to carry this infor-
mation back to the initial location q . This is done by parallel
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Fig. 1 A step in Log
map/geodesic computation by a
shooting method. q is the start
point and q̃ the end point ones
tries to reach. See the text for
further explanations

Table 1 Algorithm to compute the Riemannian Log map on the sub-
space V

Compute Logx1
(x2)

1. Set v = �G
Tx1 V (x2 − x1)

2. Compute x̄ = Expx1
(v)

3. If |x2 − x̄| < ε, return v, else continue.

4. Compute v̄ = �G
Tx̄V (x2 − x̄)

5. Compute v′ the Parallel Transport of v̄ to Tx1V , using (21).

6. Update v = v + v′ and go to Step 2.

transporting it back along the geodesic γV (q, qn) in V join-
ing q and qn. The parallel transport P(wn) is computed via

the covariant derivative DV

dt
of γV (q, qn) in V . Once done,

we update the initial velocity vn+1 = vn + P(wn).
Such a procedure is generally not guaranteed to converge,

it will depend on the intrinsic curvatures of S and V in a
neighborhood of q and q̃ as well as the extrinsic curvature of
V in S (generalizing the second fundamental form). When
manifolds are sufficiently “flat” it generally work well how-
ever. The algorithm is given in Table 1. A fundamental step
is computing the parallel transport of a vector w(0) ∈ Tx(0)V

along a geodesic curve x(t) ∈ V . We now derive the needed
equations. The parallel transport is characterized by

w(t) ∈ Tx(t)V ⇒ DF(x(t),w(t)) = 0, (15)

DV

dt
w(t) = 0 ⇒ DS

dt
w(t) ∈ Nx(t)V (16)

where DV

dt
, DS

dt
are the covariant derivatives with respect to

the space V and the embedding manifold S respectively.
Differentiating (15) and re-arranging terms we get

dw
dt

= −(JF (x))†((D2F(x)ẋ)w) (17)

where JF(x)† is the G-pseudo-inverse of JF(x) and
D2F(x) is the second differential of F at x. JF(x)† is com-

puted using the method described in previous section, which
gives

JF(x)† = G−1JF(x)T (JF (x)G−1JF(x)T )−1,

(16) gives

DS

dt
w(t) =

∑
k

(
dwk

dt
+

∑
ij


k
ijwi ẋj

)
∂

∂xk

∈ NxV (18)

where 
 are the Christoffel symbols of the embedding
space S . Using the classical relation

Null(A)⊥ = Range(A∗)

for a linear operator A between Euclidean spaces, we get
that NxV = Range(JF (x)∗) and thus there exists λ(t) such
that

DS

dt
w(t) = JF(x)∗λ(t) (19)

where the adjoint JF(x)∗ is given by

JF(x)∗ = G−1JF(x)T .

Let f (w(t),
, ẋ(t)) = [∑ij 
k
ijwi ẋj ]k=1,...,N . Rewriting

(18) and (19), we get

dw
dt

+ f (w(t),
, ẋ(t)) = JF(x)∗λ(t). (20)

Put (17) in (20) to compute λ(t):

λ(t) = (JF (x)∗)†(f (w(t),
, ẋ)

− JF(x)†((D2F(x)ẋ)w))

One can then compute dw
dt

as
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Fig. 2 Exponential map at x = (0,1,0) for v = (1,0,0) on V1

dw
dt

= −f (w(t),
, ẋ)

+ (JF (x)∗)(JF (x)∗)†(f (w(t),
, ẋ)

− JF(x)†((D2F(x)ẋ)w). (21)

We use a finite difference scheme to implement the above
equation.

2.4 Stereographic Projection

We now implement the Exponential map on a toy example
and verify the results before moving on to the more com-
plicated curve evolution equations with the L2 metric. For
this example, we have S = R

3, V = F−1(0),F : R
3 → R.

The metric G is the one induced by stereographic projection
P : S

3\(0,0,0,1) → R
3 which is given by

P(x1, x2, x3, x4) =
(

x1

1 − x4
,

x2

1 − x4
,

x3

1 − x4

)
.

Set � := 1 + y2
1 + y2

2 + y3
3 . Then the inverse of P is

P −1(y1, y2, y3) =
(

2y1

�
,

2y2

�
,

2y3

�
,
� − 2

�

)
.

Then, the corresponding inner product induced on R
3 at a

point y = (y1, y2, y3) is [30]

Gy(v1, v2) = 4

�2
〈v1, v2〉R3 (22)

(note that this is a classical example of a conformal equiva-
lence). Let F1(y) = y2

1 +y2
2 +y2

3 −1 and V1 = F−1
1 (0). This

is the equatorial great circle of S
3. The gradient and Hessian

of F and DGx are straightforward to compute. Figure 2
shows the result of our exponential map algorithm. With this
particular choice of F , the situation might be a bit too “toy-
ish”. Figure 3 shows the exponential map on V2 = F−1

2 (0)

Fig. 3 Exponential map at x = (0,0.5,0.282444) for v = (−0.7039,

0.03,0.8249) on V2

for F2(y) = 20y1 +2y2 +20y3 −5y2
1 −5y2

2 −5x2
3 −5, which

is the intersection of a tilted plane passing through the origin
and S

3.
We can verify whether the obtained curves are geodes-

ics or not by checking the tangential component of the ac-
celeration vector. The acceleration vector (in the embedded
space) is given by the covariant derivative (for the embed-
ding space) of the velocity vector field (along itself). This is
required since the metric on the embedding space is not the
usual Euclidean one, which gives rise to non-zero Christof-
fel symbols (Christoffel symbols and covariant derivative
definitions are recalled in Appendix). For a curve γ of Vi ,
i = 1, . . . ,2, to be geodesic, we must have

γ̈ (t) = ∇γ̇ (t)γ̇ (t) ∈ Nγ (t)Vi

where Nγ (t)Vi is the orthogonal complement of Tγ (t)Vi in
Tγ (t)S . The tangential component of the acceleration in Vi

is computed by projecting the covariant derivative Dγ̇
dt

of
the velocity vector γ̇ to the tangent space. Figures 4 and 5
show the norm of different accelerations and projected ac-
celerations for the two geodesics computed on V1 and V2 re-
spectively. We also found that the error between the analyt-
ically computed geodesic and the geodesic computed with
our algorithm reduces as we reduce the time-step, as shown
in Fig. 6.

We have also verified our algorithm for computing Log
map on both V1 and V2. A key ingredient being parallel
transport, Fig. 7, illustrates the parallel transport of a vec-
tor along a geodesic in V2. It should, up to solver’s preci-
sion have zero normal component and covariant derivatives.
We show the norms of the normal components and covariant
derivatives in Fig. 8. Although errors accumulate, norm of
the normal component remains below 6 × 10−4 after 1000
iterations and the norm of the covariant derivative is even
smaller.
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Fig. 4 (Color online) The black and red curves are the norms of tan-
gential and normal acceleration vectors of the geodesic on V1, respec-
tively. The solid curves are computed with a time step of 0.01, while
the dashed curves are with a time step of 0.001. Due to numerical er-
rors, the tangential component is larger than the normal component of
acceleration. Still the magnitudes are the order of 10−2. One can also
observe that the tangential and normal component reduce as we reduce
the time step, thereby converging to zero, the desired theoretical value

Fig. 5 (Color online) The black and red curves are the norm of tan-
gential and normal acceleration vector of the geodesic on V2, respec-
tively. The solid curves are computed with a time step of 0.01, while
the dashed curves are with a time step of 0.001. One can observe that
the tangential component reduces as we reduce the time step of the
algorithm

3 Subspace of Equidistant Neighboring Node Point
Spline Curves

We recall first a few elementary facts on cardinal B-splines,
and refer to [4, 31–33] for details.

Set β0(x) = χ[− 1
2 , 1

2 )
the 0-th order basis spline, the n-th

order B-splines is defined inductively as

βn(x) = β0(x) ∗ β0(x) ∗ · · · ∗ β0(x)︸ ︷︷ ︸
n+1 times

where ∗ denote the convolution product.

Fig. 6 Plot of sup norm of the difference between the numerically
computed geodesic shown in Fig. 2 and analytically computed geo-
desic on V1 against the time-step used in our algorithm

Fig. 7 (Color online) Parallel transport of a vector w ∈ Tx(0)V along
previously computed geodesic on V2. The transported vectors are
shown in blue and tangent to the geodesic in green

Fixing such an order and an integer N > 0, we consider
the space of curves

c(s) =
∑
i∈Z

βn(s − i)ci , ci = (cx
i , c

y
i ) ∈ R

2

with the periodicity condition

ci+N = ci .

The periodicity in the sequence of control points insures that
the curve c is closed and everywhere of class Cn−1. The
space of such curves is denoted as S2N and is obviously of
dimension 2N , with the following basis

e1i =
(

βn(s − i)

0

)
, e2i =

(
0

βn(s − i)

)
,

i = 1, . . . ,N.
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Fig. 8 (Color online) The norm of the normal component of the paral-
lel transported vector shown in Fig. 7 is the black curve (� 10−4) and
covariant derivative in V2 of the parallel transported vector is shown in
blue (�0)

This is not an orthogonal basis, as, though

〈e1i , e2j 〉 = 0,

〈eki, ekj 〉 =
∫ N

0
βn(s − i)βn(s − j) dx = δn,|i−j |

depends on n and the distance between i and j .
Thus the basis vectors (eki)

k=1,2
i=1,...,N are not orthogonal

with respect to the L2 inner product.
Given such a curve c, at each knot j ∈ {1, . . . ,N}, corre-

sponds a “node point” Pj = (P x
j ,P

y
j ) = c(j)(not cj , which

denotes a control point), and this correspondence is unique
and linear, given by an N × N matrix Mn

N⎛
⎜⎝

cx
1 c

y

1
...

...

cx
N c

y
N

⎞
⎟⎠ = Mn

N

⎛
⎜⎝

P x
1 P

y

1
...

...

P x
N P

y
N

⎞
⎟⎠

see [4] for details.
We generally start with initial node points and build

spline curves passing through them, curves that then will
evolve. In most of the curve evolution algorithms we
will discuss, we need to be able to compute first and
second order derivatives of our spline curves, thus βn

should be of order at least 3. In the sequel we assume
the order n fixed as well as the number N of control
points/node points. We now define the constraints, as fol-
lows. Set

di,j = ‖Pj − Pi‖2
2

the squared Euclidean distance between two points Pi,Pj

in R
2. Then the subspace can be written as simple quadratic

constraints F : S2N → R
N−1 given as

Fi(P1, . . . ,PN) = di+2,i+1 − di+1,i , i = 1, . . . ,N − 2,

FN−1(P1, . . . ,PN) = d1,N − dN,N−1. (23)

The configuration space is the subspace of S2N given by
ÃN = F−1(0). The tangent space of ÃN at a configuration
x is given by

TxÃN = ker(JF (x)) (24)

the kernel (or null space) of the Jacobian of F at point
x ∈ ÃN ⊂ S2N . We may call ÃN a N -links bicycle chain
manifold. We have explored it in a previous paper [34]. As
mentioned in Sect. 2, the hierarchy of the subspaces in this
case is more complicated. Not all curves in the space of
closed spline curves with N control points (S2N ) are im-
mersions. Moreover the group of circular permutations on
node points has no ‘geometric’ effect on the spline curve.
This will result in a non-zero distance between a curve
and a curve obtained by circular permutation of the set of
node points of the original curve. We overcome this prob-
lem simply by choosing a corresponding starting point on
the curves. We let ImmN = S2N ∩ Bi . Similarly not all
curves in ÃN are immersions. Also the Jacobian of F may
not be full rank everywhere on S2N . We let A′

N ⊂ ÃN be
the subset where the Jacobian is full rank and let AN =
A′

N ∩ ImmN be the space of equidistant neighboring node
point closed spline curves that are immersions and where
the Jacobian is full rank. For now, given a curve in AN ,
we hope that we stay in AN along an evolution, without
putting up additional constraints to ensure that a curve re-
mains an immersions and that the rank of the Jacobian
does not reduce (we use TxAN = ker(JF (x))), accepting
the fact that time and again we may end up in the space
ÃN \ A′

N .
We now need to construct an inner product on AN . In-

stead of restricting the scalar product of R
2N to TxAN , we

induce the L2 metric of Bi and SN on TxAN .4 We now de-
rive the expression for the L2 inner product on the spline
subspace. Given two deformations p(s) = ∑

i β
n(s − i)pi

and q(s) = ∑
i β

n(s − i)qi of the spline curve c(s), the in-
ner product of the deformations is given as

〈p(s), q(s)〉c =
∫ N

0

(∑
i

βn(s − i)pi

)
· n(s)

×
(∑

j

βn(s − j)qj

)
· n(s)|c′(s)|ds

= P T G(c)Q

where a · b is the usual dot product between two vectors
a and b, n(s) is the inner unit normal to the curve c(s)

4Not all N node points spline curves are immersions. But we assume
that the evolution velocity keeps the curve in Bi .
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and P = (p0
x,p

0
y, . . . , p

N−1
x ,pN−1

y ) and Q = (q0
x , q0

y , . . . ,

qN−1
x , qN−1

y ) are the control point vectors. The Gram ma-
trix G(c) is a 2N × 2N matrix which can be written as an
N × N matrix of smaller 2 × 2 matrices given by

Gij (c) =
∫ N

0
βn(s − i)βn(s − j)n(s)n(s)T |c′(s)|ds.

One can clearly see the smoothing effect of the splines in the
Gram matrix. This limits the high frequency variation of a
deformation.

The derivative of the Gram matrix with respect to the
node points Pk of the curve c(s) at which it is computed
is a 2N × 2N × 2N matrix whose members are 2N × 2N

matrices of the form

dGij

dPk

(c) =
∫ N

0
βn(s − i)βn(s − j)

× d

dPk

(n(s)n(s)T |c′(s)|) ds. (25)

The inner unit normal of a curve c(s) = (x(s), y(s)) is given

as n(s) = (−y′(s),x′(s))T√
x′(s)2+y′(s)2

. Given the direct and indirect spline

transforms [32, 33], one can compute the derivatives in (25)
with little work. The gradient and Hessian of the equidistant
constraint are easy to compute and the pseudoinverse of the
JGFT matrix can be computed as shown in (14).

To restrict a given curve evolution to the subspace AN ,
we simply iterate the three projection steps described in
Sect. 2. The projection to S2N is given by (using (6))

vS(t) =
∑
j

[
G−1

1

(∫ N

0
ei(s)v(s, t)

× n(s, t)|c′(s)|ds |i=1...N

)]
j

ej (26)

where ei are the spline basis vectors of S2N . One can ob-
serve that computation of the motion of a control point due
to the velocity v(s, t)n(s, t) is non-local, i.e., depending on
the basis vectors (splines in this case), the control point mo-
tion computation is a weighted average like process over a
certain neighborhood. This comes from the fact that finite
dimensional curve representation has to be non-local in na-
ture. The spline basis vectors filter out high frequency varia-
tions of the velocity field on the curve, which in some sense
gives similar effect to using the Sobolev inner product on
the space of curves (as in [9]). The projection to Tc(t)AN is
given by (6) and we can further project the obtained tangent
velocity vector to the N -links bicycle chain manifold using
the Exponential map given by (11), (12), (13) and (14).

4 Experiments

We verify our algorithm to restrict curve evolution and to
compute Log maps with the following experiments:

4.1 Curvature Flow

Curvature flow is given as

∂c

∂t
(p, t) = κ(p, t)n(p, t) (27)

where κ(−, t) is the curvature of the curve c(−, t). This flow
has interesting properties like

– A simple curve, under the curvature flow, evolves into a
convex curve and vanishes at a round point [35].

– Under the curvature flow, the curve does not self intersect
[35].

– The curvature flow is a curve shortening flow, i.e., it is a
gradient descent on the length of the curve.

– Two curves under curvature flow, one completely con-
tained in the other, will not intersect during their evolu-
tion.

– The curvature flow simplifies curves, i.e., the variation of
curvature of a curve reduces with time [2].

We project this flow to the N -links bicycle chain manifold.
We would like this projected flow to preserve as many of the
properties of the original flow as possible. Empirically, one
can see that at least some of these properties are preserved,
see Fig. 9. Specifically, the curve evolves into a curve that is
as close as possible to a circle in the N links bicycle chain
manifold. Also observe that there is a tangential motion to
the curve in order to satisfy the implicit constraints.

Fig. 9 Curvature flow of a non-convex curve. The points marked by
‘o’ are node points of the spline curve. Observe that there is a tangential
motion to the curve in order to satisfy the equidistant constraint



236 J Math Imaging Vis (2010) 38: 226–240

Fig. 10 (Top-left) Curvature flow restricted to N -links bicycle chain manifold. (Top-right) Curvature flow restricted to linear spline subspace.
(Bottom-left) some of the final iterations of curvature flow in N -links bicycle chain manifold. (Bottom-right) some of the final iterations of
curvature flow in spline subspace. Notice the numerical errors arising because of node points coming too close to each other

4.2 Comparison with Unconstrained Flow

The node points of a spline curve may come too close to
each other during the evolution. But when the evolution is
restricted to the N links bicycle chain manifold, the node
points remain equidistant from each other by construction.
Hence the evolution is numerically more stable. In Fig. 10,
we compare the curvature flow restricted to the N links bi-
cycle chain manifold with the curvature flow restricted to the
linear spline subspace. We see that the node points can get
very close to each other leading to numerical instability.

4.3 Geodesic Active Contours

Geodesic active contours are used to segment objects from
an image. The user defines an initial curve around the ob-
ject of interest, which then evolves and adheres to the object
boundary. The curve evolution equation is given as

∂c

∂t
(p, t) = (κg − 〈∇g,n〉 + αg)n (28)

where g : R → R is the edge detection function

g(|∇I (c(p))|) = 1

1 + |∇I (c(p))|2

Fig. 11 (Color online) Geodesic active contours on a heart image. The
points marked with red ‘o’ are the node points

and the αg term helps in detecting non-convex objects [36].
We show a segmentation result on a heart MRIimage in
Fig. 11 in which the contours are members of the N links
bicycle chain manifold.
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Fig. 12 Log of the deformed kidney shaped curve (with node points
marked by ‘*’) with a circular curve as the base point is shown by
deformation vectors on the node points of the circle. The other kidney
shaped curve (with node points markes with ‘o’) is the Exponential
map of the computed Log map at the base point (circle)

4.4 Log Map

The Log map between two curves defines a vector field on
the first curve. We use shooting method to compute the Log
map. The vector field, two initial curves, and the Exponen-
tial map of the computed Log map are shown in Fig. 12.
Since there is a threshold parameter in the shooting method,
the Exponential map of the computed Log map does not ex-
actly match the target curve. One can obtain more accurate
results by lowering the threshold parameter.

5 Conclusion and Future Work

In this paper we give a new algorithm to restrict curve evo-
lution to implicitly defined subspace induced with a non-
Euclidean metric. We give a new algorithm to compute the
Exponential map on implicitly defined manifolds equipped
with a non-Euclidean metric. The N -links bicycle chain
manifold is a useful space to work in, specially in medical
imaging, where landmarks and pseudo-landmarks are often
used. Moreover this algorithm can be used as an optimiza-
tion method to optimize over implicitly defined manifolds
with a given inner product.

One of the drawbacks of this method is that as the number
of points on the curve increases, computing the derivative of
the Gram matrix dG

dX
becomes very expensive. Currently we

use an iterative shooting scheme to compute the Riemannian
Log map which may not always converge. We need to look
for more general schemes for the Log map.

Another direction of future work is to understand the be-
haviour of geodesics when the number N of node points

tends to +∞. Will they exhibit severe high frequency os-
cillations? This was not observed in our experiments, where
N ≈ 30, and this raises the related question of how many
node points are needed for a given problem.

Appendix: Definitions from Differential Geometry

We give definitions of some concepts from differential
geometry that we use in the paper (mainly from [21]) for
the convenience of the reader.

1. Differentiable Manifolds:
A differentiable manifold of dimension n is a set M and
a family of injective mappings T = {xi : Ui ⊂ R

n → M}
of open sets Ui of R

n into M such that

• ⋃
i xi(Ui) = M , i.e. the open sets cover M .

• For any pair i, j with xi(Ui) ∩ xj (Uj ) = W �= φ, the
mapping x−1

j ◦ xi is differentiable.
• The family T is maximal, which means that if (y,V ),

y : V ⊂ R
n → M is such that: for each element of T ,

(xi,Ui) with xi(Ui) ∩ y(V ) �= 0 implies that y−1 ◦ xi

is a diffeomorphism, then in fact (y,V ) ∈ T .

2. Directional derivative of a function along a vector field:
A vector field X on M is a map that associates to each
p ∈ M an element X(p) ∈ TpM , where TpM is the tan-
gent space of M at p. Let f : M → R be a differentiable
function of M and X a vector field on M . The directional
derivative X(f ) is the function M → R,

X(f )(p) = dfp(X(p))

the differential of f at p evaluated at vector X(p).
3. Immersion and Embedding:

A differentiable mapping ψ : M → N between two man-
ifolds is an immersion if its differential map dψp :
TpM → Tψ(p)N is injective for all p ∈ M . If ψ is also a
homeomorphism from M onto ψ(M) ⊂ N where ψ(M)

has the subspace topology of N , then ψ is called an em-
bedding and ψ(M) is an (embedded) submanifold of N .

4. Riemannian Metric:
A Riemannian metric on a manifold M is a correspon-
dence which associated to each point p ∈ M an in-
ner product 〈−,−〉p on the tangent space TpM , which
varies smoothly. In terms of local coordinates, the met-
ric at each point x is given by a matrix, gij = 〈Xi,Xj 〉x ,
where Xi,Xj are tangent vectors to M at x, and it varies
smoothly with x. A Geodesic curve is a local mini-
mizer of arc-length computed with a Riemannian met-
ric.

5. Affine connection:
Let X (M) be the set of all smooth vector fields on M .
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An affine connection ∇ on a differentiable manifold M

is a mapping

∇ : X (M) × X (M) → X (M)

which is denoted by ∇(X,Y ) → ∇XY and which satis-
fies the following properties:

• ∇f X+gY Z = f ∇XZ + g∇Y Z

• ∇X(Y + Z) = ∇XY + ∇XZ

• ∇X(f Y ) = f ∇XY + X(f )Y

in which X,Y,Z ∈ X (M) and f,g are C∞(M). This
gives us a notion of directional derivative of a vector field
defined on the manifold.

6. Covariant derivative:
Let M be a differentiable manifold with affine connec-
tion ∇ . There exists a unique correspondence which as-
sociates to a vector field V along the differentiable curve
c : I → M another vector field DV

dt
along c, called the

covariant derivative of V along c, such that

• D
dt

(V + W) = DV
dt

+ DW
dt

, where W is a vector field
along c.

• D
dt

(f V ) = df
dt

V + f DV
dt

, where f is a differentiable
function on I .

• If V is induced by a vector field Y , a member of
the tangent bundle of M , i.e. V (t) = Y(c(t)), then
DV
dt

= ∇ dc
dt

Y .

In a parametrized manifold, where the curve c(t) is rep-
resented as (x1(t), . . . , xn(t)), the covariant derivative
becomes

Dv

dt
=

∑
k

{
dvk

dt
+

∑
i,j


k
ij v

j dxi

dt

}
∂

∂xk

(29)

where the 
k
ij are the coefficients of the connection

also known as the Christoffel symbols 
. For the Levi-
Civita connection associated with the metric g of a Rie-
mannian manifold, the corresponding Christoffel sym-
bols are given by


k
ij = 1

2

∑
m

{
∂

∂xi

gjm + ∂

∂xj

gmi − ∂

∂xm

gij

}
gmk (30)

gij is the ij th element of the metric, and gij is the ij th
element of its inverse. A curve is geodesic if the covariant
derivative of its tangent vector field is zero everywhere
on it, which means that a geodesic curve has zero tangen-
tial acceleration. Such a curve c satisfies the second order
system of ODEs, which, with the above parametrization
becomes

d2xk

dt2
+

∑
ij


k
ij

dxi

dt

dxj

dt
= 0, k = 1, . . . , n. (31)

7. Exponential map:
The exponential map is a map Exp : T M → M , that
maps v ∈ TqM for q ∈ M , to a point on M obtained
by going out the length equal to |v|, starting from q ,
along a geodesic which passes through q with veloc-
ity equal to v

|v| . Given q ∈ M and v ∈ TqM , and a
parametrization (x1, . . . , xn) around q , Expq(v) can be
defined as the solution at time 1 of the above sys-
tem of ODEs (31) with initial conditions (xi(0)) = q

and ( dxi

dt
(0)) = v, i = 1, . . . , n. The geodesic starting

at q with initial velocity t can thus be parametrized
as

t �→ Expq(tv).

8. Log map: For q̃ in a sufficiently small neighborhood of
q , the length minimizing curve joining q and q̃ is unique
as well. Given q and q̃ , the direction in which to travel
geodesically from q in order to reach q̃ is given by the
result of the logarithm map Logq(q̃). We get the corre-
sponding geodesics as the curve t �→ Expq(tLogq q̃). In
other words, Log is the inverse of Exp in the neighbor-
hood.
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