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Abstract. The variational TV-L1 framework has become one of the
most popular and successful approaches for calculating optical flow. One
reason for the popularity is the very appealing properties of the two
terms in the energy formulation of the problem, the robust L1-norm of
the data fidelity term combined with the total variation (TV) regular-
ization that smoothes the flow, but preserve strong discontinuities such
as edges. Specifically the approach of Zach et al. [1] has provided a very
clean and efficient algorithm for calculating TV-L1 optical flows between
grayscale images. In this paper we propose a generalized algorithm that
works on vector valued images, by means of a generalized projection
step. We give examples of calculations of flows for a number of multi-
dimensional constancy assumptions, e.g. gradient and RGB, and show
how the developed methodology expands to any kind of vector valued
images. The resulting algorithms have the same degree of parallelism as
the case of one-dimensional images, and we have produced an efficient
GPU implementation, that can take vector valued images with vectors of
any dimension. Finally we demonstrate how these algorithms generally
produce better flows than the original algorithm.

Key words: Optical flow, TV, convex nonsmooth analysis, vector val-
ued images, projections on ellipsoids, GPU implementation

1 Introduction

During the last decade estimation methods for optical flow have improved tremen-
dously. This is in part due to ever-increasing computational power, but in partic-
ular to a wide variety of new interesting estimation methods (Xu et al. [2], Sun
et al. [3], Zimmer et al. [4]) as well as novel implementation choices, that have
proven to effectively increase accuracy (Sun et al. [5]). A basic framework for
calculating optical flow is based on the variational TV-L1 energy formulation.
This method and and variations hereof has proved to be very effective (Bruhn
et al. [6], Brox et al. [7], Zach et al. [1]). In the pure form the TV-L1 energy
consists of a term penalizing the total variation of the estimated flow, and a
term encouraging data matching in term of an L1-norm that is robust to out-
liers. One type of closely related energies is achieved by replacing the L1-norms
with smooth Charbonnier penalties ([6], [7]), and another variation consist in
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replacing the L1-norms by smooth Huber norms [8]. In the pure form, Zach et.
al [1] were the first to solve the TV-L1 optical flow problem using nonsmooth
convex analysis.

This paper presents an algorithm for calculating the TV-L1 optical flow be-
tween two vector valued images I0, I1 : Rd → Rk, which is an extension that
has not previously been done in the nonsmooth convex analysis setting. The
algorithm generalizes the highly influential algorithm by Zach et al. [1], and the
extension allows the use of e.g. color or gradient information when calculating
the flows. This additional information improves the quality of the flow, com-
pared to only using intensity values, but we will also show that simple and clean
implementations of the presented algorithms, in a number of cases even surpass
the more sophisticated TV-L1-improved algorithm [9] on training data from the
Middlebury optical flow database [10] in terms of average endpoint error. The
focus of this paper is not to produce perfectly engineered algorithms to compete
on the Middlebury benchmark, but to develop and explore the generalizations of
an elegant optical flow algorithm. It is however the hope that the work presented
here will lay the ground for competitive optical flow algorithms in the future.

The paper is organized as follows. In the next section we recall the TV-
L1 formulation for calculating optical flow. In Section 3 we introduce the tools
used to solve our vectorial extension. A general algorithm and some implemen-
tation issues are discussed in Section 4, and examples are given in Section 5. We
then present experimental results and comparisons on image sequences from the
Middlebury database in Section 6, and finally we summarize and discuss future
directions.

2 TV-L1 optical flow of vector valued images

The recovery of motion patterns is clearly an important feature of human vi-
sion, and during the last two decades a large number of computer vision ap-
plications has become dependent on motion information. The optical flow is
one way of expressing motion information, where we calculate the displacement
field v between two images, I0 and I1. This field should minimize the difference
I1(x + v(x)) − I0(x) while still being sufficiently regular. Here we will concen-
trate on the variational TV-L1 formulation of the optical flow problem, where
the optical flow is recovered as a minimizer of the energy E:

E(v) = λ

∫
T

‖I1(x + v(x))− I0(x)‖ dx +

∫
T

‖∇v(x)‖ dx. (1)

The first term in this energy is the L1-term, i.e. an integral of the Euclidian
norm of the difference I1(x+ v(x))− I0(x), where the images are vector valued.
This term builds on an assumption that image values are conserved over time,
and along the motion. For grayscale images this implies that we do not have
radical changes in the lighting of the scene, but for vector valued images the
exact meaning will depend on the nature of the image format, as we will see in
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Section 5. The second term simply penalizes the total variation of the flow, so
the estimation favors smoother displacement fields.

The first step in minimizing this energy is to linearize the optical flow con-
straint around the point x + vx

0 for each x,

I1(x + v(x))− I0(x) ≈ I1(x + vx
0 ) + JI1(x + vx

0 )(v(x)− vx
0 )− I0(x)

=ρ(v)(x)

, (2)

where JI1 denotes the Jacobian of I1. The problem is then split in two, intro-
ducing an auxiliary variable u, and the following energies are then minimized
iteratively in a coarse-to-fine pyramid scheme

E1(u) =

∫
T

‖∇u(x)‖dx+
1

2θ

∫
T

‖v(x)− u(x)‖2 dx, (3)

E2(v) = λ

∫
T

‖ρ(v)(x)‖dx+
1

2θ

∫
T

‖v(x)− u(x)‖2 dx. (4)

Equation (3) is solved by the well known method by Chambolle (Chambolle
[11], Bresson and Chan [12]) which is reproduced as Proposition 1 in [1], and this
minimization will not be discussed in the present paper. Instead we will solve the
minimization of (4). Since no differential of v is involved, the minimization of
(4) boils down to a pointwise minimization, with vx

0 and u(x) fixed, of a strictly
convex cost function of the form

F (v) =
1

2
‖v − u0‖2 + λ‖Av + b‖. (5)

When I0 and I1 are scalar-valued, b is real and A : Rd → R is the differential of
I1 computed at x+vx

0 , which is a linear form. Because, when A 6= 0, b is always
in the range of A, the minimization above boils down to computing the residual
of a projection onto a closed and bounded line segment, this is the essence of
Propositions 2 and 3 of [1] (when A = 0, the above minimization is of course
trivial).

When, on the other hand, I0 and I1 take their values in Rk, A becomes a
linear map Rd → Rk, and it may happen that b ∈ Rk is not in the image (range)
of A, even when A 6= 0. In this case the cost function F is smooth and can be
minimized by usual variational methods. On the other hand, when b ∈ ImA, one
needs to project onto an elliptic ball. This will de discussed in the next section.

3 A general minimization problem

In this section we present the tools used for solving the minimization problem
(5). We recall first a few elements of convex analysis, the reader can refer to
[13] for a complete introduction to convex analysis in both finite and infinite
dimension. Here we will restrict ourselves to finite dimensional problems.
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A function f : Rd → R is one-homogeneous if f(λx) = λf(x), for all λ > 0.
For a one-homogeneous function, it is easily shown that its Legendre-Fenchel
transform

f∗(x∗) = sup
x∈Rd

{〈x,x∗〉 − f(x)} (6)

is the characteristic function of a closed convex set C of Rd,

dC(x∗) := f∗(x∗) =

{
0 if x∗ ∈ C,

+∞ otherwise.
(7)

The one-homogeneous functions that will interest us here are of the form f(x) =
‖Ax‖ where A : Rd → Rk is linear, and ‖ · ‖ is the usual Euclidean norm of
Rk. The computation of the associated Fenchel transform involves the Moore-
Penrose pseudoinverse A† of A. We recall its construction.

The kernel (or null-space) of A, denoted KerA, is the vector subspace of the
v ∈ Rd for which Av = 0. The image (or range) of A, denoted ImA, is the
subspace of Rk reached by A. The orthogonal complement of KerA is denoted
KerA⊥. call ι the inclusion map KerA⊥ → Rd and π the orthogonal projection
Rk → ImA. It is well known that the composition map B = π ◦A ◦ ι

KerA⊥
ι−→ Rd A−→ Rk π−→ ImA (8)

is a linear isomorphism between KerA⊥ and ImA. The Moore-Penrose pseu-
doinverse A† of A is defined as

A† = ι ◦B−1 ◦ π. (9)

With this, the following lemma provides the Legendre-Fenchel transform of f(x):

Lemma 1. The Legendre-Fenchel tranform of x 7→ ‖Ax‖ is the characteristic
function dC of the elliptic ball C given by the set of x’s in Rd that satisfy the
following conditions

A†Ax = x (10)

x>A†A†>x ≤ 1. (11)

From the properties of pseudoinverses, the equality x = A†Ax means that x
belongs to KerA⊥. In fact, A†A is the orthogonal projection on KerA⊥. On this
subspace, A†A†> is positive definite and the inequality thus defines an elliptic
ball.

We will not prove the lemma, but we indicate how it can be done. In the case
where A is the identity Id of Rd, it is easy to show that C is the unit sphere of
Rd. The case where A is invertible follows easily, while the general case follows
from the latter using the structure of pseudoinverse (see [14] for instance). �

We can now state the main result which allows to generalize the TV-L1

algorithm from [1] to calculate the optical flow between two vector valued images.
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Proposition 1. Minimization of (5).

(i) In the case b 6∈ ImA, F (v) is smooth. It can be minimized by usual methods.
(ii) In the case where b ∈ ImA, F (v), which fails to be smooth for v ∈ KerA+

A†b, reaches its unique minimum at

v = u− πλC
(
u +A†b

)
(12)

where πλC is the projection onto the convex set λC = {λx, x ∈ C}, with C
as described in Lemma 1.

To see (i), write b as Ab0 + b1, with b0 = A†b, Ab0 being then orthogonal pro-
jection of b onto ImA, while b1 is the residual of the projection. The assumption
of (i) implies that b1 6= 0 is orthogonal to the image of A. One can then write

‖Av + b‖ = ‖A(v + b0) + b1‖ =
√
‖A(v + b0)‖2 + ‖b1‖2 (13)

which is always strictly positive as ‖b1‖2 > 0, and smoothness follows.
In the situation of (ii), since b ∈ ImA, we can do the substitution v ← v+A†b

in function (5) and the resulting function has the same form as a number of func-
tions found in [11] and [15]. We refer the reader to them for the computation of
minimizers. �

Proposition 1 generalizes Propositions 2 and 3 from [1] since, on one-dimensional
spaces, elliptic balls are simply line segments. The next example demonstrate
this, and the subsequent example extends to multi-dimensional values.

Example 1. Consider the minimization problem

arg min
v

(
1

2
‖v − u0‖2 + λ|a>v + b|

)
, λ > 0, (14)

where v,u0 ∈ Rd, a ∈ Rd \ {0}. The pseudoinverse of v 7→ a>v is the multipli-
cation by a/‖a‖2. Applying Lemma 1, the set C is just the line segment [−a,a]
and proposition 1 gives the solution

u = u0 − πλ[−a,a]
(
u0 +

b

‖a‖2
a

)
, (15)

where the projection is given by

πλ[−a,a]

(
u0 +

b

‖a‖2
a

)
=


λa if a>u0 + b < −λ‖a‖2

−λa if a>u0 + b > λ‖a‖2

−a>u0+b
‖a‖2 a if |a>u0 + b| ≤ −λ‖a‖2

. (16)

This is easily seen to correspond to the projection step for the TV-L1 algorithm
in [1], namely Proposition 3 with a = ∇I1 and b = I1( · +v0)−∇I1 ·v0− I0. ◦
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Example 2. Now consider the more general minimization problem

arg min
v

(
1

2
‖v − u‖2 + λ‖Av + b‖

)
, λ > 0. (17)

where A ∈ Rk×2. If A has maximal rank (i.e. 2), then is is well known that
the 2 × 2 matrix C = A†A†> is symmetric and positive definite [14]. The set C
is then an elliptic disc determined by the eigenvectors and eigenvalues of C. If
however the matrix has two linearly dependent columns a 6= 0 and ca, a series
of straightforward calculations give

KerA = Ry, KerA⊥ = Rx, ImA = Ra (18)

with x = 1
1+c2 (1, c)> and y = 1

1+c2 (−c, 1)> an orthonormal basis of R2, and

A†A†> =
1

(1 + c2)2‖a‖2

(
1 c

c c2

)
. (19)

If c = 0, the inequality (11) from Lemma 1, just amounts to

u21
‖a‖2

≤ 1 ⇐⇒ −‖a‖ ≤ u1 ≤ ‖a‖ (20)

(with u = (u1, u2)>), a vertical strip, while equality (10) in Lemma 1 simply
says that u2 = 0, thus, setting γ = ‖a‖, C is the line segment

[−γx, γx] ⊂ R2. (21)

The case where c 6= 0 is identical, and obtained for instance by rotating the
natural basis of R2 to the basis (x,y). ◦

4 Implementation

In this section we will consider how to use the tools developed in the previous
section to implement an algorithm for calculating the TV-L1 optical flow between
vector valued images. One particular appealing feature of the formulation we
have given, is that the algorithm is essentially dimensionless, in the sense that
we can produce a single implementation that can take images I0, I1 : R2 → Rk
for all values of k. This can be done since the calculations given in Example 2
only depend on k for the calculation of norms. We recall that the linearized data
fidelity term is given by

ρ(v) = JI1(x + vx
0 )

A

v(x) + I1(x + vx
0 )− I0(x)− JI1(x + vx

0 )vx
0

b

, (22)

and according to Proposition 1 there are two main situations to consider when
minimizing E1. The first situation is when b /∈ ImA, which translates to I1(x +
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vx
0 ) − I0(x) /∈ ImA, and in this situation the energy is smooth and can be

minimized by usual methods (following e.g. [7]). In the alternative situation, we
can minimize the energy by the projection step described in Proposition 1 (ii).
In the case of images with two spatial coordinates, the calculations necessary for
the projection step are done in Example 2.

A generic algorithm for the vector TV-L1 flow is given in Algorithm 1.

Data: Two vector valued images I0 and I1
Result: Optical flow field u from I0 to I1
for L = Lmax to 0 do

// Pyramid levels

Downsample the images I0 and I1 to current pyramid level
for W = 0 to Wmax do

// Warping

if I1(x + u(x))− I0(x) ∈ ImJI1(x + u(x)) then
Compute v as the minimizer of E1, using Proposition 1 (ii) on
current pyramid level

else
Compute the minimizer v by gradient descent

end
for I = 0 to Imax do

// Inner iterations

Solve (3) for u on current pyramid level

end

end
Upscale flows to next pyramid level

end

Algorithm 1: General TV-L1 algorithm for vector valued images.

4.1 Projections on elliptic balls

As already mentioned, the set C will be an elliptic ball, and when the Jacobian
JI1 has full rank the ball is proper, i.e. it is not degenerated to a line segment or a
point. Projecting a point outside C onto the boundary ellipsoid is somewhat more
complicated than projection onto a line segment, and finding efficient and precise
algorithms for this is still an active area of research, [16]. We have taken the
approach of doing a gradient descent on the boundary ellipsoid. This approach
is not very efficient in terms of computational effort, but on the upside the
algorithm is very simple, and easily implemented. The algorithm is specified in
Algorithm 2, where, in order to alleviate notation, we have denoted the matrix
(J†1J

†>
1 )(x + vx

0 ) by C. The convergence criterion of the algorithm is based on
the fact that the line between the original point w and the projection vn should
be orthogonal to the boundary at vn, and if this is not achieved in 100 iterations
the last value is returned.

In the situation where the Jacobian has full rank, it holds that JI1J
†
I1

=
Id. This means that the condition of equation (10) disappears. In addition it
simplifies the expression for the point we are projecting, since the vx

0 ’s cancel
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Data: The point w and the matrix C specifying the bounding ellipsoid.
Result: The orthogonal projection of w onto the ellipsoid.

Set v0 =
w√
〈w, Cw〉

, and let the stepsize τ > 0 be small enough.

while vn has not converged do

vn+1 = vn + τ(w + 〈vn,vn −w〉Cvn) // Gradient step

vn+1 =
vn+1√

〈vn+1, Cvn+1〉
// Reprojection

end

Algorithm 2: Projection of a point w onto an ellipsoid.

out, so the point simply becomes

w = J†I1(x + vx
0 )(I1(x + vx

0 )− I0(x)). (23)

4.2 Implementation choices

In the implementations we present here it has been assumed that we are always
in the situation that I1(x + vx

0 )− I0(x) ∈ ImJI1(x + vx
0 ), and when this is not

the case, we simply project I1(x+vx
0 )−I0(x) onto the image of the Jacobian, so

we never do the gradient descent step for v. The justification for this is twofold.
First, if noise is small (relative to the data fidelity term), one expects that a
displacement vector v satisfies the following

0 ≈ I1(x + vx
0 )− I0(x) ≈ Av + b (24)

with the notations of equation (22), which means that b is “approximately” in
ImA. In the case where noise is considerable, this step is followed by a regu-
larization step, which should correct for the discrepancies when noise is modest
in the neighborhood. Considering however the actual case that b is not in the
image of the Jacobian may improve the precision of the computed optical flow
slightly.

For the implementation we use five pyramid levels with a downsampling
factor of 2, and the gradients used in the projection step are estimated by bicubic
lookup. For the minimization of E2 we use forward and backward differences as
suggested in [11]. Finally it should be mentioned that the minimization procedure
presented in Proposition 1 is highly parallel. We have chosen to implemented the
algorithm in CUDA C, so the computations can be accelerated by the hundreds
of cores on modern graphics processing units.

5 Examples

In this section we will consider a number of different constancy assumptions for
vector valued images. We will start with perhaps the most simple example of
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this. Consider two gray-scale images I ′0, I
′
1 : R2 → R, and let

I0 = ∇I ′0, I1 = ∇I ′1. (25)

Solving (1) then corresponds to computing the flow with the gradient constancy
assumption (GCA) proposed by Brox et al. [7], which will typically be more
robust to illumination changes [10]. A very simple implementation of the flow
algorithm from the previous section can then be done by assuming that JI1
always has full rank, and then simply do the ellipse projection in each step.
When the Jacobian does not have full rank, a small amount of noise is added to
the entries in the matrix until the determinant is no longer zero. This approach
is justified from the observation that it is relatively rare that the Hessian of
the original images is zero, when the derivatives are estimated using bicubic
lookup, and it is our experience that the suggested procedure does not introduce
a noticeable bias in the resulting flow. In addition it has the positive side effect
of slightly faster computations.

The most obvious example of a vector valued constancy assumption is con-
stancy of RGB colors, such that I0, I1 : : R2 → R3. Other color spaces can also
be used (e.g. HSV for a more robust representation [4]). The colors provide valu-
able discriminative information, that should typically increase the precision of
the flow compared to only using brightness values. As opposed to gradient con-
stancy (25), it is much more common that the three RGB-layers contain exactly
the same information, so the calculations should take into account the rank of
the Jacobian, and do the projection step according to Example 2.

An alternative higher order constancy assumption is based on the Laplacian
of individual RGB-color channels. The Laplacian has the property that it is
invariant to rotation or flipping in the pixel neighborhood, and so should be
better suited for these types of motion (see e.g. [17]).

Fig. 1. Frame 10 of the Dimetrodon sequence represented in color, gradient (of in-
tensities) and Laplacian of color channels. The color coding of the gradient vectors
is also used for the following flow images, and the Laplacian of the color channels is
represented in (rescaled) RGB.

Figure 1 contains an image from the Dimetrodon sequence in respectively
color, gradient and Laplacian of RGB representation. The flows calculated be-
tween the RGB images and the gradient images of the Dimetrodon sequence can
be seen in Figure 2. One notes that the GCA flow matches the true flow better
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than the RGB version, especially along the tail of the dimetrodon. This is most
likely due to the high gradients around the tip of the tail as can be seen in Figure
1. For this sequence the average endpoint errors (AEE) are 0.156 and 0.086 for
the color and gradient flows respectively. The parameters used in this example
can be found in Table 1.

Table 1. Parameters for the flows in Figure 2.

warps inner iterations λ θ

RGB TV-L1 75 10 0.19 0.27

GCA TV-L1 75 9 0.22 0.23

RGB GCA Ground truth

Fig. 2. Flows of the Dimetrodon sequence calculated using RGB TV-L1 (AEE 0.156)
and GCA TV-L1 (AEE 0.086) respectively. Last image is ground truth from the Mid-
dlebury optical flow database.

As another example, consider the sequence Grove3 from the Middlebury op-
tical flow database (Figure 3). Here we are faced with a much more complicated
flow pattern, and it is clear that the colors provide additional information for
discriminating objects, and the flow calculated using the RGB information also
results in a better flow than using just the brightness channel (Figure 4). There
are however still problems with recovering the details of the small structures,
which is probably due to the coarse-to-fine pyramid scheme (Xu et al. [2]).

6 Results

Results for all training sequences from the Middlebury optical flow database are
available in Table 2. These results are for a fixed set of parameters for each
algorithm, which can be found in Table 3. The parameters has been chosen as
the ones that produce the average lowest (normalized) AAE, and have been
found by an extensive grid search, with the number of warps locked at 75. The
computation time for the optical flow between a pair of 640× 480 RGB images
is around 0.5 seconds on an NVIDIA R© TeslaTM C2050 GPU for the proposed
parameters, which is a factor 6 faster than the TV-L1-improved algorithm (cf.
the Middlebury database [10]). At a minor cost in accuracy (fewer warps) the
RGB+MF algorithm can do realtime flow calculations for 640×480 RGB images.
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Fig. 3. Frame 10 from the Grove3 sequence and the ground truth flow.

BCA RGB RGB+MF

Fig. 4. Flows of the Grove3 sequence calculated using brightness constancy assumption
TV-L1 (AEE 0.85), RGB TV-L1 (AEE 0.62) and RGB TV-L1 with a 3 × 3 median
filtering step of the flow (AEE 0.57). The parameters are given in Table 3.

From Table 2 it can be seen that the flows calculated between gradient images
will improve the results of the baseline (BCA) TV-L1 only in a limited number of
cases, however if changing lighting conditions were a bigger issue, this algorithm
or the Laplacian of RGB (∆-RGB) should be preferred.

The results for the RGB algorithm are somewhat more impressing. In six of
the eight cases we see more precise flows compared to baseline, and on the two
remaining sequences, the results are comparable.

Finally the results of the TV-L1-improved algorithm from [9] and the RGB
algorithm with a 3×3 median filter step are included for comparison. It should be
noted that the four basic algorithms are implemented quite sparsely, i.e. without
median filtering of the flow, structure–texture decomposition of the images etc.,
since this will correspond to minimizing an energy different from the original TV-
L1 (Sun et al. [5]). In the light of this it seems promising that the simple RGB
algorithm outperforms the TV-L1-improved on three of the eight sequences, since
TV-L1-improved uses a number of these clever tricks. We see that the addition
of a small median filter improves the results of the RGB algorithm considerably,
and using more of the schemes from the TV-L1-improved algorithm will in all
probability give further improvements for the algorithms presented here.
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Table 2. Average endpoint error results for the Middlebury optical flow database
training sequences for different constancy assumptions. Bold indicates the best result
within each of the two blocks. The last two rows consist of our RGB algorithm with
3× 3 median filtering and the TV-L1-improved results from [9] for comparisson.

BCA GCA RGB ∆-RGB RGB+MF “improved” [9]

Dimetrodon

0.14 0.10 0.16 0.22 0.16 0.19

Grove2

0.18 0.23 0.17 0.24 0.15 0.15

Grove3

0.85 0.76 0.62 0.84 0.57 0.67

Hydrangea

0.20 0.22 0.24 0.23 0.25 0.15

RubberWhale

0.20 0.20 0.17 0.18 0.17 0.09

Urban2

0.59 0.42 0.38 1.52 0.36 0.32

Urban3

0.82 0.99 0.62 1.25 0.50 0.63

Venus

0.54 0.58 0.53 0.67 0.49 0.26

Table 3. Global parameters for the flow results of Table 2.

warps inner iterations λ θ

BCA 75 9 0.07 0.71

GCA 75 11 0.05 0.59

RGB 75 12 0.24 0.76

∆-RGB 75 7 0.40 0.45

RGB+MF 75 2 0.45 0.70

7 Conclusion and future research

In this paper we have proposed a generalization of the TV-L1 optical flow al-
gorithm by Zach et al. [1]. We have considered a number of flow algorithms
based on different constancy assumptions, and it has been demonstrated that
these algorithms are superior to the standard brightness constancy implemen-
tation on training data from the Middlebury optical flow database. It was even
showed that some of these algorithms surpassed the more sophisticated TV-L1-
improved algorithm by Wedel et al. [9] in a number of cases. A point of interest
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is to consider if further refinements from the TV-L1-improved algorithm could
also enhance the algorithms presented here. The median filter step that was in-
cluded in the RGB+MF algorithm increased accuracy, as well as the robustness
to wrong parameter choices, and a 5 × 5 median filter would probably increase
accuracy even further [5]. We suspect that a structure–texture decomposition
could increase the precision of the RGB TV-L1 algorithm slightly, but the gain
for the GCA TV-L1 would probably be negligible (Sun et al. [5]). Another in-
teresting direction would be to consider higher order data fidelity terms, e.g.
GCA of RGB, GCA and RGB (2+3 dimensions) like in [6]. The implementation
and combination of these terms is very easy in the current setup, as it can be
done by simply pre-processing the input images, and inputting these new vector
valued images to the same flow algorithm, similarly to what was done for the
gradient constancy assumption and Laplacian of RGB. We are currently looking
into these refinements, and working on implementing a competitive version of
the algorithm to submit to the Middlebury optical flow database.

Another point of future research would be to automatically determine the
parameters of the algorithms from the sequences. The results of Table 2 are, as
already mentioned, computed from a single set of parameters, but changing the
parameters can drastically improve the precision on some sequences, and degrade
the quality of others (compare Figure 2 and Table 2). An excellent yet very simple
approach for automatic determination of the smoothness weights is the “optimal
prediction principle” proposed by Zimmer et al. [4]. An alternative approach is
to define a rigorous stochastic model that allows for likelihood estimation of
parameters such as the model by Markussen [18] based on stochastic partial
differential equations. A step further could be to automatically determine which
algorithm should be used for computing the flow, possibly only for parts of the
images. One method of doing this has been successfully applied in the magnificent
optical flow algorithm by Xu et al. [2], and another method was presented in
[19]. In the setting of video coding, multiple motion estimates has been used in
[20], where a criterion based on best interpolation quality was introduced.

Finally we are currently working on constructing specialized data fidelity
terms for specific applications of optical flow, e.g. for inpainting ([21], [22]) or
different schemes for variational super-resolution ([23], [24]), which should pro-
duce optical flows that are better suited for these specific tasks.
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